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Preface

This dissertation is devote to a study of the properties of some matrix classes in linear

complementarity problem. The linear complementarity problem is the problem of find-

ing a complementarity pair of nonnegative vectors in a finite dimensional real vectors

space that satisfies a given system of inequalities. In particular, given a square matrix

M of order n with real entries and n dimensional vector q, the linear complementarity

problem LCP(M, q) is to find an n dimensional vector z such that Mz + q ≥ 0, z ≥ 0

and zt(Mz + q) = 0 or to show that no such vector z exists. Since several problems in

optimization and engineering can be posed as LCPs, the theory of LCP has a wide range of

applications in applied science and technology. The mathematical structure of the LCP has

inspired several researchers to study matrix properties and algorithms for its solution. A

brief outline of the contents are presented in a chapter wise summary.

Chapter 1 is introductory in nature. So, the introduction section of this chapter is bit long.

Because we want to give a clear view of the problem and to show where the root of the

problem belongs or from where the problem comes. We also talk about the work of the

researchers in this field and the development of this problem. Here we present the required

definitions of the matrices, those are going to be used commonly all the other chapters in

this dissertation and we also try to show the bondage and distinctness of all those matrix

classes. Every time we used examples to help our reader for better understanding of the

nature of the matrices instead of a detailed literature. We also include a survey of the

results of complementarity problems on the basis of those matrices from the literature

those really made the basic motivation of our work.

Chapter 2 we consider derived classes of PSBD matrix over Rn. PSBD matrix was first

studied in B. MARTOS [38] only for symmetric case. Then J.-P. CROUZEIX, A. HASSOUNI, A.

LAHLOU and S. SCHAIBLE [8] generalize this matrix for both symmetric and asymmetric

cases. J.-P. CROUZEIX, S. KOMLOSI [7] and S.K. NEOGY, A.K. DAS [48] go further with

this class of matrix and introduce Generalized Positive Sub-Definite (GPSBD) and Weak
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Generalized Positive Sub-Definite (WGPSBD) matrix classes. The chapter started with

an introduction of the background of derived PSBD matrix classes. Then we give all the

definitions of derived PSBD matrix classes and show their inclusion relationships and

moreover to show their distinctness by adding some examples at the end of that section.

Then after we started our work with rank wise characterization of matrix M. Firstly we

take in our consideration matrix of rank one. We study those derived PSBD matrix classes

and we stated that the coordinates of rank one matrix has the characteristic to cover the

whole derived PSBD matrix classes while changing the sign pattern of the element of the

vectors a and b. Here we also add a series of examples to give a clear idea about our given

theorem. The results presented in this section have appeared in [31]. Further, it is shown

that, for the rank one matrix the Linear Complementarity Problem LCP(M,q) is solvable

whenever it is feasible with some additional conditions. Then we check again those matrix

classes for the case of order (2) and rank (2) matrices and we obtain some interesting

results. But at the beginning of that subsection we proof some fundamental theorems for

GPSBD and WGPSBD matrix classes which are already exist for PSBD classes. The purpose

of those results are to show the inclusion relationship of derived PSBD matrix classes and

also those results are necessary for the further discussion of order (2)and rank (2) matrices.

These work has been accepted in “International Journal of Mathematical analysis”. Then

finally we check those matrix classes matrix of rank greater than and equal to two and

we terminate that section with some results. At the last section of this chapter we made

a summary of all existent results are found on derived PSBD matrix classes in connection

with LCP.

Chapter 3 we consider the case of a proper cone K and we begin this chapter with a brief

introduction as usual. In the first section of that chapter we try to re-group some necessary

definitions of existence classes and sub-classes of PSBD matrices. We also demonstrate

some basic and important criteria and characterization of PSBDK matrices. Some points

we compare some results for the both cases, such as for the case of proper cone K and for

the case of nonnegative orthant Rn
+. Then we study elaborately rank one matrix and prove

some important and necessary properties and theorems. Further, it is shown that for the

rank one matrix the Linear Complementarity Problem LCP(M, q, K) is solvable whenever

it is feasible with some additional conditions. The results presented in this chapter have

appeared in [31] and CoDIT13. In this section we also resume the most prominent results

for LCP’s over cone.
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Numbering

The chapters of this dissertation are numbered from 1 to 3; their sections are denoted by

decimal numbers of the type 2.3 (which means Section 3 of Chapter 2) and 2.3.4 is used to

refer Item 4 of Section 3 in Chapter 2. Some sections are further divide into subsections. The

latter are not numbered, but each has a heading. All items (e.g., Lemma, Theorem, Example,

Corollary etc.) are identified in this fashion. Equation (1.3.2) is used to refer Equation 2 in

Section 3 of Chapter 1. We use brackets [ ] for a bibliographical reference.

3



Préface (en français)

Cette thèse est consacrée à la cratérisation de certaines classes de matrice fortement liées

au problème de complémentarité linéaire. La résolution d’un tel problème est la recherche

d’une paire de vecteurs complémentaires non négatifs dans un sous espace vectoriel réel de

dimension finie satisfaisant à un système d’inégalités bien donné. En général, étant données

une matrice carrée réelle M d’ordre n et un n-vecteur réel q, le problème de complémentarité

linéaire LCP(M,q) consiste à trouver un n-vecteur z réel tels que :

Mz + q ≥ 0, z = 0 et 〈z, Mz + q〉 = 0

ou montrer qu’aucun tel vecteur z n’existe.

Les problèmes PCL puisent tout leur intérêt en tant que modélisation mathématique

d’un grand nombre de problèmes d’optimisation intervenant en ingénierie, en mé-

canique, en économie, etc. La question d’existence a fait l’objet, sous différents angles, de

plusieurs travaux de recherche. En particulier, une attention fervente, aussi bien théorique

qu’algorithmique, a été accordée à la résolution du PCL et à la cratérisation géométrique de

l’ensemble des solutions en cas d’existence. Aussi l’apport des résultats de cette présente

thèse en est-t-il une contribution majeure. Ci-joint, un bref aperçu du contenu de cette thèse

sous forme de résumés de chaque chapitre.

Le chapitre 1 est de nature initiative dont l’introduction est un peu longue ; nous voulons

donner un petit historique, avec une vision simple et claire, sur la naissance et la croissance

poussée de l’étude des problèmes de complémentarité linéaires. Puis nous présentons les

différentes définitions des matrices évoquées tout au long de cette thèse tout en montrant

les différentes inclusions possibles. Chaque fois nous avons utilisé des exemples ou

contre-exemples pour aider nos lecteurs de mieux comprendre la nature des matrices au

lieu d’une littérature détaillée. Nous incluons également une esquisse des résultats de com-

plémentarité étant donnée une classe particulière de matrice : résolution et caractérisation

de l’ensemble des solutions en cas d’existence.

4



Au chapitre 2, nous considérons les classes de matrices dérivées de la matrice Positive

SuB-Definite (PSBD) sur Rn
+. La Matrice PSBD a été d’abord étudiée par B. MARTOS [38]

mais seulement pour le cas de matrice symétrique. Ensuite, J.-P. CROUZEIX, A. HASSOUNI,

A. LAHLOU et S. SCHAIBLE [8] ont généralisé cette matrice pour le cas asymétrique. Juste

après, J.-P. CROUZEIX, S. KOMLOSI [7] et en suite S.K. NEOGY, A.K. DAS [48] ont introduit

les matrices Generalized Positive SuB-Definite (GPSBD) et les matrices Weak Generalized

Positive SuB-Definite (WGPSBD). Dans ce chapitre, nous donnons toutes les définitions

des matrices dérivées PSBD, GPSBD, WGPSBD tout en montrant les relations d’inclusion

possibles. Dans notre étude spectrale de ce type de matrices, les matrices de rang (1) ont

fait défaut. Ce qui expliquera la prise en considération en premier lieu seulement des

matrices de rang (1), ainsi une étude presque complète lui est dédiée et dont les résultats

ont été publiés dans [31]. Ensuite, nous passons aux matrices de plein rang d’ordre (2) et

nous obtenons de très bons résultats qui serviront comme généralisation à des cas plus

généraux. Une partie de ce dernier travail a été accepté pour publication. Puis, finalement,

nous terminons par des essais de caractérisation des dites matrices de rang supérieur ou

égal à deux. Notons ici, toute l’étude a été faite sur le orthant Rn
+.

Dans le chapitre 3, nous généralisons les définitions, caractérisations et résultats de complé-

mentarité du LCP(M,q,K) d’ores et déjà obtenus dans le chapitre 2 au cas d’un propre cône

K. Les résultats présentés dans ce chapitre ont été publiés dans [31] et CoDIT13.

5



Preliminaries

We consider matrices and vectors with real entries. Let Rn
+ denotes the nonnegative orthant

in Rn and Rn×n denotes the set of all n× n real matrices. Any vector z ∈ Rn is a column

vector unless otherwise specified, and zt denotes the row transpose of z ∈ Rn.

In the following some most frequently used terminology and inequality of vectors are

given:
zty the standard inner product of vectors in Rn

z ≥ 0 nonnegative vector (i.e., zi ≥ 0 ∀i)

z ≤ 0 nonpositive vector (i.e., zi ≤ 0 ∀i)

z > 0 and z 6= 0 semi-positive vector

z > 0 positive vector (i.e., zi > 0 ∀i)

z < 0 negative vector (i.e., zi < 0 ∀i)

either z ≥ 0 or z ≤ 0 and z 6= 0 semi-unisigned vector

either z > 0 or z < 0 unisigned vector

A matrix M ∈ Rn×n is in the class X, we denoted it as M ∈ X and Mt denotes its transpose.

For index sets α ⊆ {1, ..., m} and β ⊆ {1, ..., n}, the submatrix Mαβ of M is the matrix whose

entries lie in the rows of M and indexed by α and the column indexed by β. If α = {1, ..., m}
, we denote the submatrix Mαβ by Mα.; similarly, if β = {1, ..., n} , we denote the submatrix

Mαβ by M.β. If m = n and α = β, the submatrix Mαα is called a Principal Submatrix of M;

the determinant of Mαα is called Principal Minor of M. We denote by Ms the matrix

Ms = 2Mt(M + Mt)† M

here the symbol “s" indicates symmetrization; Ms is always symmetric and Ms = M if and

only if M is symmetric and the symbol “†" indicates the (Moore-Penrose) pseudoinverse. For

the case when M is invertible, we denote Ms by

Ms = 2Mt(M + Mt)−1M

Given a symmetric matrix B ∈ Rn×n, its inertia is the triple

In(B) = (ν+(B), ν−(B), ν0(B))

where ν+(B),ν−(B) and ν0(B) denote the number of positive, negative and zero eigenvalues

of B respectively. Then ν+(B) + ν−(B) + ν0(B) = n.

6



CONTENTS 0

A set K ⊆ Rn is a cone if it is closed under non-negative scalar multiplication, i.e., z ∈
K implies that λz ∈ K; ∀λ ≥ 0. Moreover, if given x, y ∈ K, x + y ∈ K, the cone is in fact

convex. In order to avoid some technical nuisances, a convex cone K is pointed if it contains

no straight line. For closed cones, this geometric property is equivalent to K ∩ (−K) = {0}.
The cone K is said to be solid if its interior (denoted by int(K)) is not empty. If a cone

K is closed, pointed convex and solid then we call K is a proper cone1. We denote K∗ the

nonnegative polar cone of K; i.e.,

K∗ = {z∗ ∈ Rn : 〈z∗, z〉 ≥ 0 for all z ∈ K}

K∗ is also proper cone in Rn and int(K∗) is given algebraically by

int(K∗) = {z∗ ∈ Rn : 〈z∗, z〉 > 0 for all 0 6= z ∈ K}

Let K be a proper cone of Rn. Usually, we defined “
K
�” and “

K
�” the partial conical ordering

of Rn as follows: z, y ∈ Rn,

z
K
� y ⇔ z− y ∈ K and z

K
� y ⇔ z− y ∈ int(K)

For an element z ∈ K, we write z
K
� 0 (z

K
� 0) if and only if z ∈ K (z ∈ int(K)) and

z
K
� 0 (z

K
≺ 0) if and only if −z ∈ K (−z ∈ int(K)). The partial ordering “

K∗
�” and “

K∗
�”

generated by K∗ are defined similarly. It is necessary to mention that these partial ordering

is nothing but “≥” and “>” respectively when K = Rn
+.

1Some authors call such a cone full or regular.
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CHAPTER 1

General introduction and basic

concepts

Contents

Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1 Matrix classes in LCP theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Complementarity results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Motivation

The Linear Complementarity Problem (LCP) is a fundamental problem that arises in optimiza-

tion, game theory, economics and engineering. Let K be a proper cone in Rn and M be a

square real matrix of order n and q a n-vector. The Linear Complementarity Problem on K

consists of finding a vector z such that:

z ∈ K, Mz + q ∈ K∗ and zt(Mz + q) = 0 LCP(M, q, K)

If K = Rn
+ it can be stated on simply denoted by LCP(M, q), is to find a n-vector z such that:

w−Mz = q, w ≥ 0, z ≥ 0 (1.0.1)

wtz = 0 (1.0.2)

The name comes from the condition (1.0.2), the complementarity condition which requires

that at least one variable in the pair (wj, zj) should be equal to zero in the solution of the

problem, for each j = 1, 2, ..., n. This pair is therefore known as the jth complementarity pair

8



1

in the problem and for each j, the variable wj is known as the complement of zj and vice

versa. If a pair of vectors (w, z) satisfies (1.0.1), then the problem LCP(M,q) is said to have

a feasible solution and we denoted the set of feasible solutions by Fes(M, q). A pair (w, z) of

vectors satisfying (1.0.1) and (1.0.2) is called a solution to the LCP(M, q) and we denoted the

set of solutions by Sol(M, q). Another expressing of the LCP(M, q), namely as the problem

of finding a vector z ∈ Rn such that

z ≥ 0, Mz + q ≥ 0 and zt(Mz + q) = 0 LCP(M, q)

The problem has undergone several name changes. It has been called the “composite prob-

lem” the “fundamental problem” and the “complementarity pivot problem”. The current

name Linear Complementarity Problem was proposed by R.W. COTTLE in 1965 [4]. The LCP

is normally identified as a problem of mathematical programming and provides a unifying

framework for several optimization problems like linear programming, linear fractional

programming, quadratic programming and the bimatrix game problem. More precisely,

the LCP models the optimality conditions of these problems. It is well studied in the litera-

ture on mathematical programming and a number of application are reported in operations

research [19], multiple objective programming problem [40], mathematical economics [51],

geometry and engineering [19, 21, 53]. Some new applications of the LCP have been re-

ported in the area of stochastic games [41]. This sort of applications and the potential for

future applications have motivated the study of the LCP, especially the study of the algo-

rithms for the LCP and most importantly the study of the variant matrix classes. In fact,

much of the linear complementarity theory and algorithms are based on the assumption

that the matrix M belongs to a particular class of matrices. The early motivation for study-

ing the linear complementarity problem was that the Karush-Kuhn-Tucker (K.K.T.) opti-

mality conditions for linear and quadratic programs reduce to an LCP of the form given by

(1.0.1) and (1.0.2).

Quadratic Programming (QP):

minimize f (x) = ctx + 1
2 xtQx

subject to Ax ≥ b

x ≥ 0

(1.0.3)

where Q ∈ Rn×n is symmetric, c ∈ Rn, A ∈ Rm×n and b ∈ Rm (the case Q = 0 gives rise

to a linear program). If x is a locally optimal solution of the programme (1.0.3), then there

exists a vector λ ∈ Rm such that the pair (x, λ) satisfies the K.K.T conditions:

9



1

K.K.T.-conditions of the (QP) problem can be written as:

v = Qx− Atλ + c

s = Ax− b

x, λ, v, s ≥ 0

xtv + λts = 0

(1.0.4)

If, in addition, Q is positive semi-definite, i.e., if the objective function f (x) is convex, then

the conditions (1.0.4) are in fact, sufficient for the vector x to be globally optimal solution

of (1.0.3).

with Q symmetric is the same as solving the LCP(M,q) with

q =

(
c

−b

)
and M =

(
Q −At

A 0

)
(1.0.5)

The fourth condition of (1.0.4) derives from the complementarity of each group of variables

(x, s) with its set of K.K.T. vectors (optimal Lagrange multipliers) being (v, λ). In that case,

z =

(
x

λ

)
and w =

(
v

x

)

An important special case of the (QP) is where the only constraints are nonnegativity re-

strictions on the variables x. In this case, the program (1.0.3) takes the following simple

form:
minimize f (x) = ctx + 1

2 xtQx

subject to x ≥ 0
(1.0.6)

If Q is positive semi-definite, the program (1.0.3) is completely equivalent to the LCP(M,q),

M and q defined on (1.0.5). For an arbitrary symmetric Q, the LCP(M,q) is equivalent to the

stationary point problem of (1.0.6). A (QP) with only nonnegativity constraints serves as an

important bridge between LCP with symmetric matrix and a general (QP) with arbitrary

linear constraints.

The algorithm presented by C.E. LEMKE and J.T. HOWSON [33] to compute an equilibrium

pair of strategies to a bimatrix game, later extended by C.E. LEMKE [34] (known as LEMKE’s

algorithm) to solve an LCP(M,q), contributed significantly to the development of the linear

complementarity theory. In fact, the study of the LCP really came into prominence only

when C.E. LEMKE and J.T. HOWSON [33] and C.E. LEMKE [34] showed that the problem of

computing a Nash equilibriam point of a bimatrix game can be posed as an LCP following

the publication by [6]. However, LEMKE’s algorithm does not solve every instance of

10



1.1. MATRIX CLASSES IN LCP THEORY 1

the LCP, and in some instances of the problem may terminate inconclusively without

either computing a solution to it or showing that no solution to it exists. Extending the

applicability of LEMKE’s algorithm to more matrix classes have been considered by many

researchers like B.C. EAVES [11], C.B. GARCIA [20] and M.J. TODDS [60]. For more detailed

we suggest our readers the books on the LCP and its applications R.W. COTTLE, J.S. PANG

and R.E. STONE [3], K.G. MURTY [46].

A number of generalization of the linear complementarity problem have been proposed

to accommodate more complicated real life problems as well as to diversify the field of

applications, see M.S. GOWDA and R. SZNAJDER [25, 57], S.R. MOHAN , S.K. NEOGY and R.

SRIDHAR [43] and R.W. COTTLE, J.S. PANG and R.E. STONE [3].

1.1 Matrix classes in LCP theory

Matrix classes play an important role in studying the theory and algorithms of the Linear

Complementarity Problem (LCP). For this reason a variety of matrix classes are introduced

in the context of the LCP. Some of them are commonly found in several other applications

too. Some of these matrix classes are very interesting because they characterize certain

properties of the LCP and they offer certain nice features from the view point of algorithms.

Several algorithms have been designed for the solution of the LCP. As these methods are

matrix class dependent, i.e., they work only for LCPs and cannot give no information

otherwise. It is useful to review some of those matrix classes and their properties which

will form the basis of our further discussion.

Let K be a proper cone in Rn. A real square matrix M of order n is said to be:

- Positive Definite on K (PDK) if:

zt Mz > 0 for all z ∈ K− K and z 6= 0

- Positive Semi-Definite on K (PSDK) if:

zt Mz ≥ 0 for all z ∈ K− K

As matrix classes play a strong role in the theory of LCP, the above two are the most fun-

damental one. In addition to the fact that these matrices are the most commonly found in

applications, they have very nice properties which serve as a model for extension.

11



1.1. MATRIX CLASSES IN LCP THEORY 1

- Strictly Copositive on K (Strictly CK
0 ) if:

zt Mz > 0 for all z
K
� 0 and z 6= 0

- Copositive1 (CK
0 ) if:

zt Mz ≥ 0 for all z
K
� 0

- Copositive Plus (CK
0
+) if: M is CK

0 and(
z

K
� 0, zt Mz = 0

)
implies

(
M + Mt) z ∈ K⊥

where the symbol “⊥” denotes the orthogonality.

- Copositive Star (CK
0
∗) if: M is CK

0 and(
z

K
� 0, Mz

K∗
� 0 and zt Mz = 0

)
implies Mtz

K∗
� 0

The inclusion relationships among the above matrix classes are quite clear:

PDK class ⊆ PSDK class

and

Strictly CK
0 class ⊆ CK

0
+

class ⊆ CK
0
∗

class ⊆ CK
0 class.

It is straightforward to show that a PDK matrix is must be Strictly CK
0 and a PSDK matrix

must be CK
0 .

When K = Rn
+, we omit the notation “K”, so a real square matrix M of order n is said to be:

- Positive Definite (PD) if:

zt Mz > 0 for all z ∈ Rn and z 6= 0

- Positive Semi-Definite (PSD) if:

zt Mz ≥ 0 for all z ∈ Rn

- Strictly Copositive (Strictly C0) if:

zt Mz > 0 for all z ≥ 0 and z 6= 0

1The matrix M is said to be conegative on K if −M is copositive on K

12



1.1. MATRIX CLASSES IN LCP THEORY 1

- Copositive (C0) if:

zt Mz ≥ 0 for all z ≥ 0

- Copositive Plus (C+
0 ) if: M is C0 and

(
z ≥ 0, zt Mz = 0

)
implies

(
M + Mt) z = 0

- Copositive Star (C∗0 ) if: M is C0 and

(
z ≥ 0, Mz ≥ 0 and zt Mz = 0

)
implies Mtz ≤ 0

The inclusion relationships among the above matrix classes are also very clear:

PD class ⊆ PSD class

and

Strictly C0 class ⊆ C+
0 class ⊆ C∗0 class ⊆ C0 class.

We want to remaind again the reader that a PD matrix is must be Strictly C0 and a PSD

matrix must be C0.

We are going to give some examples to illustrate the above inclusion relationships over only

Rn
+ but it can be generalize over proper cone. However our keen interest to demonstrate

that how distinct those matrix classes are:

PSD but not PD

Let M =

(
1 −1

1 0

)
which is PSD. However M is not PD: for zt =

(
0 1

)
∈ R2, zt Mz is

not positive.

C0 but not C∗0

Let M =

(
0 1

1 1

)
which is C0. However M is not C∗0 : if zt =

(
1 0

)
≥ 0, then Mz ≥ 0

and zt Mz = 0 but Mtz is not nonpositive.

C∗0 but not C+
0

Let M =

(
0 −1

2 1

)
which is C∗0 . However M is not C+

0 : if zt =
(

1 0
)
≥ 0 then

zt Mz = 0 but (M + Mt)z 6= 0.

13



1.1. MATRIX CLASSES IN LCP THEORY 1

C+
0 but not Strictly C0

Let M =

(
3 1

−1 0

)
which is C+

0 . However M is not Strictly C0: if zt =
(

0 1
)
≥ 0 then

zt Mz is not positive.

Obviously, a nonnegative matrix is C0 and a nonnegative matrix with positive diagonal

entries is strictly C0.

Now we continue to give the definitions of matrix classes which are related to complemen-

tarity theory. Most of these classes of matrices are characterized based on the notion of sign

reversing whose definition is as follows:

Definition 1.1.1. The Matrix M ∈ Rn×n reverse the sign [28] of the vector z ∈ Rn if:

zi(Mz)i ≤ 0 for all i = 1, ..., n

we define

rev(M) = {z : zi(Mz)i ≤ 0 for all i = 1, ..., n}

rev(M) is a cone (not necessarily convex) contains ker(M).

A real square matrix M of order n is said to be:

- P matrix if all its principal minors are positive.

- P0 matrix if all its principal minors are nonnegative.

From the notion of sign reversing here we state the first characterization statement of P

matrices.

Theorem 1.1.2. ([3], Theorem 3.3.4) The matrix M ∈ Rn×n and M is a P matrix if and only if M

reverses the sign of no nonzero vector, i.e.,

zi(Mz)i ≤ 0 ∀i implies z = 0

which is equivalent to

rev(M) = {0}

A real square matrix M of order n is said to be:

14
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- Row Adequate(RAd) if

zi(Mtz)i ≤ 0 for all i ⇒ Mtz = 0

which is equivalent to

rev(Mt) = ker(Mt)

- Column Adequate(CAd) if Mt is Row Adequate,

- Adequate(Ad) if M is both Column and Row Adequate.

Obviously, any P matrix is Ad, as is any symmetric Positive Semi-Definite matrix. Not every

(asymmetric) PSD matrix is adequate, however. Moreover, there are Ad matrices which are

neither in the class of P nor PSD matrices. Look at the following examples:

PSD but not Ad

Let M =

(
1 −1

1 0

)
which is PSD. However M is neither RAd nor CAd: for

zt =
(

0 −1
)
∈ R2, zi(Mtz)i ≤ 0 for all i but Mtz 6= 0 and zi(Mz)i ≤ 0 for all i

but Mz 6= 0.

Ad but not PSD

Let M =

(
2 1

4 2

)
which is Ad but neither P matrix nor PSD matrix: for

zt =
(

2 −1
)
6=
(

0 0
)
∈ R2, zi(Mtz)i ≤ 0 for all i and zt Mz � 0. Moreover

for zt =
(

1 −1
)
∈ R2, zt Mz < 0.

A real square matrix M of order n is said to be:

- Row Su f f icient(RS f ) if for all z ∈ Rn the following implications:

zi(Mtz)i ≤ 0 for all i⇒ zi(Mtz)i = 0 for all i

- M is said to be Column Su f f icient(CS f ) if Mt is Row Sufficient.

- M is Su f f icient(S f ) if M is both Column and Row Sufficient.

It is clear that any Row (Column) Adequate matrix must be Row (Column) Su f f icient, more-

over any PSD matrix is obviously Sufficient.
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1.2. COMPLEMENTARITY RESULTS 1

The next statement collects together some simple, but useful, facts concerning sufficient

matrices in general.

Proposition 1.1.3. ([3], Proposition 3.5.3) Let M = [aij]1≤i,j≤n ∈ Rn×n. If M is RS f then:

• M is a P0 matrix.

• All principal submatrices of M are RS f matrix.

• If i, j ∈ {1, ..., n} and i 6= j, then

[aii = 0, aji ≥ 0] ⇒ aij ≤ 0

1.2 Complementarity results

A significant part of the analytical approach in the theory of existence of solutions of the

Linear Complementarity Problem is based on the formulation of a quadratic program [3].

For this reason, various classes of matrices having a major role to marking well the theory

of LCP are introduced [5, 16, 17, 29, 44, 52]. Among the most fundamental matrices, we

found those which are made by the Positive Definite and Positive Semi Definite matrices

[2]. Because, besides the fact that they represent the most traditional assumptions imposed

in the problems of LCP sources, they have good properties that serve as a model of

extension.

As we focus on the definition of sign reversing of M then an image is easily build that this

definition has a major impact on the other definitions those are stated above and below of

it and it gives the solution of LCP.

After (1.0.4), if Fes(M, q) 6= ∅ then, the pair (x∗, λ∗) satisfies the K.K.T. conditions and such

as (x∗ − λ∗) ∈ rev(Mt). If M is Positive Semi-Definite then,

(x∗ − λ∗)(M(x∗ − λ∗))i = 0 for all i = 1, ..., n

and x∗ ∈ Sol(M, q).

Theorem 1.2.1. ([3], Theorem 3.1.6) If M ∈ Rn×n is Positive Definite, then the LCP(M,q) has a

unique solution for all q ∈ Rn.

For a Positive Definite matrix, there exist z > 0 (or z ≥ 0) such as Mz > 0. Which implies

that M ∈ S [56]. The matrix M ∈ Rn×n is a an S matrix if:

Fes(M, q) 6= ∅ for all q ∈ Rn
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and every P matrix is an S matrix.

Theorem 1.2.2. ([3], Theorem 3.1.6) Let M be a Positive Semi-Definite matrix. For all q ∈ Rn, if

LCP(M,q) is feasible, then it is solvable.

In general, the LCP with a PSD matrix can have multiple solutions. For instance, the LCP

with

q =

(
−1

−1

)
and M =

(
1 1

1 1

)
has solutions

z1

(
1 0

)
, z2

(
0 1

)
, z3

(
1
2

1
2

)
.

Observe that w = Mz + q is the same for all three solutions zi (i = 1, 2, 3). So, we can say

that Mz + q has the uniqueness.

Numerous procedures have been proposed for solving the LCP(M,q) including LEMEK’S.

The preceding list is not exhaustive and all the methods assume structure in the matrix M.

This note addresses the characterization of two such classes of structured matrices. The

classes of such matrices considered are:

A real square matrix M of order n is said to be:

- Q−matrix if for every q ∈ Rn, LCP(M, q) has a solution

- Q0 −matrix if for any q ∈ Rn the LCP(M, q) is solvable whenever it is feasible.

These two matrices was the subject of research by several authors and they had given good

number of results in complementarity for various classes of matrices. In this chapter, we

have been looked at some particular classes of those matrices.

The class of such matrices ensuring a global uniqueness which is denoted by P [17]) and

characterized by: rev(M) = {0}. It is clear that any Positive Defined matrix is a P-matrix

and for all P-matrix, Sol(M, 0) = {0} and for all q ∈ Rn, Sol(M, q) is bounded.

The class for which we have (Mz + q)-uniqueness is called CAd matrix characterized by:

rev(M) = ker(M). The (Mz + q)-uniqueness holds for any symmetric Positive Semi-

Definite matrix. For an asymmetric matrix, the P0 matrix class [17] was introduced similar

way of P-matrix and characterize by:

maxzi 6=0zi(Mz)i ≥ 0 ∀z ∈ Rn z 6= 0

17



1.2. COMPLEMENTARITY RESULTS 1

All CAd-matrix is a P0-matrix.

As the problem of existence solutions of the LCP(M,q) is closely linked to the Quadratic

Programming, it is interesting to characterize the class of matrices by checking for all q ∈
Rn, if (x, u) is the K.K.T. pair of Quadratic Programming combines then x is a solution of

LCP(M,q): such a matrix is called CSf matrix [4].

Finally, the class of copositive matrices have very good properties in complementarity. In

the context of the LCP, such matrix definiteness properties seem a bit too strong, for after

all, the LCP is defined relative to the nonnegative orthant. The following stated results can

give our readers a brief outlook of this class of matrices relation with the LCP.

Theorem 1.2.3. ([3], Theorem 3.8.6) Let M ∈ Rn×n be C0 matrix and let q ∈ Rn be given. If the

implication

(z ≥ 0, Mz ≥ 0, zt Mz = 0) ⇒ ztq ≥ 0 (1.2.1)

is valid, then LCP(M,q) has a solution.

We now turn our attention to the C+
0 matrices. As we seen in the definition of a C0 matrix is

C+
0 or C∗0 if and only if every constrained minimum point of the quadratic form zt Mz on the

nonnegative orthant is an unconstrained stationary point of zt Mz (i.e., where zt Mz = 0).

For C+
0 matrices, it turns out that the implication (1.2.1) is equivalent to the feasibility of the

LCP(M,q) and the consequence is as follows:

Corollary 1.2.4. Let M ∈ Rn×n be C+
0 and let q ∈ Rn be arbitrary. Implication (1.2.1) holds if and

only if the LCP(M,q) is feasible. If (M,q) is feasible, then it is solvable, that means M ∈ Q0.

And for C∗0 matrix we have the following result from [26]

Corollary 1.2.5. Let M ∈ Rn×n be C∗0 , then M ∈ Q0.

Characterization of Sol(M,q) in relation with matrices

The set of solutions ( if it is non empty) a LCP(M,q) can be express as a finite union of convex

polyhedral of the following form:

Zα = {z ≥ 0 : (Mz + q)α = 0, (Mz + q)α ≥ 0 and zα = 0}

where α be the subset of I = {1, ..., n} and its complement is α.

and we have

Sol(M, q) =
⋃
α⊆I

Zα

18



1.2. COMPLEMENTARITY RESULTS 1

This union is not necessarily convex. However, we know that Sol(M,q) is a convex poly-

hedral if the matrix M is PD, PSD, P-matrix, RAd, CSf. And most precisely, we have the

following result:

Theorem 1.2.6. [4] Let M ∈ Rn×n and q ∈ Rn be given. The following three statements are

equivalent:

i) The solution set Sol(M,q) is polyhedral.

ii) The solution set Sol(M,q) is convex.

iii) For all z1, z2 ∈ Sol(M, q),

zt
2(Mz1 + q) = zt

1(Mz2 + q) = 0

Moreover, if Sol(M,q) is convex, then Sol(M, q) = Zα where

α = {i : zi > 0, for a certain z ∈ Sol(M, q)}
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Derived Positive SuB-Definite matrix

classes on Rn
+
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Introduction

A good number of matrix classes either symmetric or asymmetric has been introduce along

the path of the feasibility and the solvability of the Linear Complementarity Problem (LCP).

In 1969, B. MARTOS [38] was the first to introduce and to characterize symmetric Positive

SuB-Definite matrices (PSBD) as generalization of the class of positive semi-definite matri-

ces. He introduced it in connection with the study of pseudo-convexity and quasi-convexity

of quadratic forms on the nonnegative orthant Rn
+ in the context of mathematical program-

ming problems. Just after, and specially, J.A. FERLAND [14, 15] and S. SCHAIBLE [55] studied
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2.1. DEFINITIONS OF DERIVED PSBD MATRIX CLASSES 2

criteria for these matrices in the same context and obtained some more important charac-

terizations.

However, the matrices encountered in the context of the linear complementarity problem

are frequently asymmetric. Hence, in 2000, J.-P. CROUZEIX, A. HASSOUNI, A. LAHLOU and

S. SCHAIBLE [8] generalized the notion of PSBD matrices to asymmetric ones. Also, several

authors are attracted by this generalization and in 2001 J.-P. CROUZEIX and S. KOMLOSI

[7] introduce an interesting matrix class named Generalized Positive SuB-Definite (GPSBD)

matrix. Then S.K. NEOGY and A.K. DAS [49] study this GPSBD matrix class and obtain

some properties of this matrix class and finally they showed that the connection between

GPSBD matrix and LCP. They didn’t stop that point but keep going on in this path of gener-

alization and found [48] another weaker version of PSBD matrix called Weak Generalized

Positive SuB-Definite (WGPSBD) matrix. And they successfully showed the relation be-

tween WGPSBD matrix and LCP.

In our research we are profoundly attracted by these derived PSBD matrix classes and start

to check their characteristic by matrix rank. Firstly we take in our consideration rank one

matrix, since it has its own definition and characteristic. We checked thoroughly and iden-

tify the existence of PSBD, GPSBD, WGPSBD matrices [31]. Thereafter we give some results

for matrix in general to complete their inclusion relationship. Then we analyze some gen-

eral properties of matrices which are either PSBD or GPSBD or WGPSBD matrix when the

order and the rank of the matrix are two. And finally we attack matrix of rank(M) ≥ 2.

As all we know this kind of matrices has no limit, so it is not easy to find some valuable

results in general. However, we tried to add few properties of matrices rank(M) ≥ 2. At

the last section of this chapter we try to resume those results, which are commonly found

in all derived PSBD matrix classes and their relation with LCP(M,q).

2.1 Definitions of derived PSBD matrix classes

The derived PSBD matrices is a natural generalization of PSD matrices [7, 48, 49]. We require

the following definitions of that derived PSBD matrices for our further discussion. It is not

surprising that many properties of PSD matrices are lost through this generalization.

Definition 2.1.1. A real square matrix M of order n is,

- Strictly Positive SuB-Definite (Strictly PSBD) if:

∀z ∈ Rn, zt Mz < 0 implies either Mtz > 0 or Mtz < 0
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- Positive SuB-Definite (PSBD) if:

∀z ∈ Rn, zt Mz < 0 implies Mtz 6= 0 and either Mtz ≥ 0 or Mtz ≤ 0

- Generalized Positive SuB-Definite (GPSBD) if there exist two nonnegative multipliers

gi, hi with gi + hi = 1, i = 1, 2, ..., n, such that:

∀z ∈ Rn, zt Mz < 0 ⇒
{

either − gizi + hi(Mtz)i ≥ 0 ∀i

or − gizi + hi(Mtz)i ≤ 0 ∀i

Or equivalently if there exist two nonnegative diagonal matrices G and H with diag-

onal elements gi, hi where gi + hi = 1 for i = 1, 2, ..., n with G + H = In such that:

∀z ∈ Rn, zt Mz < 0 ⇒
{

either − Gz + HMtz ≥ 0

or − Gz + HMtz ≤ 0

which is also equivalent to the following expression:

∀z ∈ Rn, zt Mz < 0 implies either M̃tz ≥ 0 or M̃tz ≤ 0

where M̃ = −G + MH and we are going to use the same notation in the rest of the

paper.

Remark: It is easy to verify that matrix M is PSBD if and only if M is GPSBD with

multipliers gi = 0 and hi = 1 for all i.

- Non-degenerate GPSBD if there exist two nonnegative diagonal matrices G and H

with G + H = In, for all z satisfying zt Mz < 0 and at least one of the inequalities in

GPSBD holds in a strict way. That means,

∀z ∈ Rn, zt Mz < 0 implies M̃tz 6= 0 and either M̃tz ≥ 0 or M̃tz ≤ 0

- Weak Generalized Positive SuB-Definite (WGPSBD) if there exist nonnegative multi-

pliers gi, hi with gi + hi = 1, i = 1, 2, ..., n, such that:

∀z ∈ Rn, zt Mz < 0

⇒
{

either at least (n− 1) coordinates of − gizi + hi(Mtz)i ≥ 0, ∀i = 1, ..., n

or at least (n− 1) coordinates of − gizi + hi(Mtz)i ≤ 0, ∀i = 1, ..., n

Let G and H be two nonnegative diagonal matrices with diagonal elements gi, hi

where gi + hi = 1 for i = 1, ..., n. Then M is said to be WGPSBD if there exist two
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nonnegative diagonal matrices G and H with G + H = In such that:

∀z ∈ Rn, zt Mz < 0

⇒
{

either at least (n− 1) coordinates of M̃tz = −Gz + HMtz are nonnegative

or at least (n− 1) coordinates of M̃tz = −Gz + HMtz are nonpositive

Simply it means that, at most one coordinate of M̃tz is different sign.

- Non-degenerate WGPSBD if there exist two nonnegative diagonal matrices G and H

with G + H = In, for all z satisfying zt Mz < 0 and at least one of the inequalities in

WGPSBD holds in a strict way. That means, ∀z ∈ Rn, zt Mz < 0 implies M̃tz 6=
0 and

⇒
{

either at least (n− 1) coordinates of M̃tz are nonnegative

or at least (n− 1) coordinates of M̃tz are nonpositive

Since B. MARTOS was considering the Hessian of quadratic functions, he was con-

cerned only about symmetric matrices and this stream continued till year 2000 before J.-P.

CROUZEIX, A. HASSOUNI, A. LAHLOU and S. SCHAIBLE [8] introduce the asymmetric case.

So, note that in 1969 B. MARTOS first define that a symmetric real square matrix M of order

n is said to be,

- Strictly Positive SuB-Definite (Strictly PSBD) if:

z ∈ Rn, zt Mz < 0 implies either Mz > 0 or Mz < 0.

- Positive SuB-Definite (PSBD) if:

z ∈ Rn, zt Mz < 0 implies Mtz 6= 0 and either Mz ≥ 0 or Mz ≤ 0.

The inclusion relationships among the above matrix classes is quite clear:

Strictly PSBD class ⊆ PSBD class ⊆ GPSBD class ⊆WGPSBD class.

M is said to be:

• Merely PSBD matrix if M is a PSBD matrix but not PSD matrix

• Merely GPSBD matrix if M is a GPSBD matrix but not PSBD matrix

• Merely WPSBD matrix if M is a WGPSBD matrix but not GPSBD matrix.
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We are going to give some examples to illustrate the above inclusion relationships and those

examples serve to show that these various inclusion relationships do not hold with equality.

WGPSBD but not GPSBD

Let M =


1 −1 2

−1 1 0

0 0 1

which is WGPSBD matrix, however M is not GPSBD matrix: for

zt ∈ Rn, zt Mz < 0 and for the nonnegative diagonal matrices G and H we have

M̃tz =


−g1(2z1 − z2) + (z1 − z2)

−g2(−z1 + 2z2) + (−z1 + z2)

−g3(2z1 + 2z3) + (2z1 + z3)


with the choice of g1 = 1, g2 = 1

2 and g3 = 1
2 we have (M̃tz)t =

(
−1 − 1

2 1
)

z1, which

is neither nonpositive nor nonnegative, thus M is not GPSBD but WGPSBD matrix.

GPSBD but not PSBD

Let M =


0 2 0

−1 0 −1

0 1 0

 which is GPSBD matrix, however M is not PSBD matrix: for

z ∈ Rn, zt Mz < 0 and we have

M̃tz =


−g1(z1 − z2)− z2

−g2(2z1 + z2 + z3) + (2z1 + z3)

−g3(−z2 + z3)− z2


with the choice of g1 = 0, g2 = 1 and g3 = 0 we have (M̃tz)t =

(
−1 −1 −1

)
z2, which

is unisigned.

But if zt =
(
−1 1 5

)
then zt Mz < 0 and Mtz =

(
−z2 2z1 + z3 −z2

)
is neither

nonnegative nor nonpositive.

PSBD but not Strictly PSBD

Let M =

(
−1 0

−1 0

)
which is PSBD. However M is not Strictly PSBD: if zt =

(
1 1

)
,

then zt Mz < 0 and (Mtz)t =
(
−2 0

)
is neither positive nor negative.
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2.2 Some more properties of derived PSBD matrix classes

In our research, we notice that the case of matrix of rank one requires a special and separate

study, that’s why our first main objective is to describe this type of matrix, specially in

asymmetric once.

2.2.1 Matrix of rank one

It is very interesting that the rank one matrix is connected with derived PSBD matrix classes

in any way and this is depend on the sign of the coordinates of the vectors a and b. On the

basis of this idea we have the following theorem:

Theorem 2.2.1. Let M be a square matrix of rank one, M = abt with a, b ∈ Rn (n ≥ 2) and

a, b 6= 0.

• If a = δb for some δ ∈ R, then M is symmetric and,

- if δ > 0 then M is PSD.

- if δ < 0 then M is Negative Semi-Definite (NSD).

- if δ < 0 and either b ≥ 0 or b ≤ 0, then M is PSBD.

• If a 6= δb for all δ ∈ R, then M is asymmetric and,

- if either (b > 0) or (b < 0), then M is Strictly PSBD

- if either (b > 0 and a > 0) or (b < 0 and a < 0), then M is Strictly PSBD and Strictly C0.

The two vectors a and b are unsigned and the matrix M not admit any null column or null

row.

- if either (b > 0 and a < 0) or (b < 0 and a > 0), then M is Strictly PSBD and Strictly

Conegative.

The two vectors a and b are opposite sign and the matrix M not admit any null column or null

row.

- if either (b > 0 and a ≥ 0) or (b < 0 and a ≤ 0), then M is Strictly PSBD and C0.

The matrix M may be has a zero row.

- if either b ≥ 0 or b ≤ 0, then M is PSBD.
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- if either (b ≥ 0 and a ≥ 0) or (b ≤ 0 and a ≤ 0), then M is PSBD and C0.

The two vectors a and b are unsigned and the matrix M may be has a zero row or a zero

column.

- if either (b ≥ 0 and a ≤ 0) or (b ≤ 0 and a ≥ 0), then M is PSBD and Conegative.

The two vectors a and b are opposite sign and the matrix M may be has a zero row or a zero

column.

- if (ai = 0 whenever bi = 0) and either (b ≥ 0 and a ≥ 0) or (b ≤ 0 and a ≤ 0), then M is

PSBD and C∗0 .

The two vectors a and b are unsigned and the corresponding row of any null column is also

null.

- if (ai = 0 if and only if bi = 0) and either (b ≥ 0 and a ≥ 0) or (b ≤ 0 and a ≤ 0), then M is

PSBD and C+
0 .

The corresponding row of any null column is also null and vis versa.

- if either (a ≥ 0, bi 6= 0, ∀i and only one coordinate of b is positive) or (a ≤ 0, bi 6= 0, ∀i and

only one coordinate of b is negative) and aibi ≥ 0, ∀i then M is Merely GPSBD.

- if either (a ≥ 0, bi 6= 0, ∀i and only one coordinate of b is negative) or (a ≤ 0, bi 6= 0, ∀i and

only one coordinate of b is positive)and aibi ≤ 0, ∀i then M is Merely WGPSBD.

Proof:

• Let M a nonzero symmetric matrix of rank one M = δ bbt. For a vector z ∈ Rn

zt Mz = δ(btz)t(btz) = δ(btz)2

- for δ > 0 , zt Mz ≥ 0 for all z ∈ Rn and then M is PSD.

- for δ < 0 , zt Mz ≤ 0 for all z ∈ Rn and then M is NSD.

- in this case M is PSBD if and only if

Mtz ≥ 0 or Mtz ≤ 0 ∀z ∈ Rn

which is equivalent to:

bbtz ≥ 0 or bbtz ≤ 0

i.e.,

b ≥ 0 or b ≤ 0.

• Let M a non zero asymmetric matrix of rank one, M = abt, and a 6= δb for all δ ∈ R.
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- Strictly PSBD :

M is Strictly PSBD if and only if

z ∈ Rn and zt Mz < 0 implies either Mtz > 0 or Mtz < 0

i.e.,

(atz)(btz) < 0 implies either (atz)b > 0 or (atz)b < 0

i.e.,

b > 0 or b < 0

- Strictly PSBD and Strictly C0:

M is Strictly PSBD and Strictly C0 if and only if b > 0 or b < 0 and

zt Mz = (atz)t(btz) > 0 ∀z ≥ 0 and z 6= 0

then either
(
atz > 0 and btz > 0

)
or

(
atz < 0 and btz < 0

)
∀z ≥ 0

i.e.,

either (a > 0 and b > 0) or (a < 0 and b < 0)

- Strictly PSBD and Strictly Conegative:

M is Strictly PSBD and Strictly Conegative if and only if b > 0 or b < 0 and

zt Mz = (atz)t(btz) < 0 ∀z ≥ 0 and z 6= 0

then either
(
atz > 0 and btz < 0

)
or

(
atz < 0 and btz > 0

)
∀z ≥ 0

i.e.,

either (a > 0 and b < 0) or (a < 0 and b > 0)

- Strictly PSBD and C0:

M is Strictly PSBD and C0 if and only if b > 0 or b < 0 and

zt Mz = (atz)t(btz) ≥ 0 ∀z ≥ 0

then either
(
atz ≥ 0 and btz > 0

)
or

(
atz ≤ 0 and btz < 0

)
∀z ≥ 0

i.e.,

either (a ≥ 0 and b > 0) or (a ≤ 0 and b < 0)

- PSBD:

M is PSBD if and only if

z ∈ Rn and zt Mz < 0 implies either Mtz ≥ 0 or Mtz ≤ 0
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i.e.,

(atz)(btz) < 0 implies either (atz)b ≥ 0 or (atz)b ≤ 0

i.e.,

b ≥ 0 or b ≤ 0

- PSBD and C0:

M is PSBD and C0 if and only if either b ≥ 0 or b ≤ 0 and

zt Mz = (atz)t(btz) ≥ 0 ∀z ≥ 0

then either
(
atz ≥ 0 and btz ≥ 0

)
or
(
atz ≤ 0 and btz ≤ 0

)
∀z ≥ 0

i.e.,

either (a ≥ 0 and b ≥ 0) or (a ≤ 0 and b ≤ 0)

- PSBD and Conegative :

M is PSBD and Conegative if and only if either b ≥ 0 or b ≤ 0 and

zt Mz = (atz)t(btz) ≤ 0 ∀z ≥ 0

then either
(
atz ≥ 0 and btz ≤ 0

)
or

(
atz ≤ 0 and btz ≥ 0

)
∀z ≥ 0

i.e.,

either (a ≥ 0 and b ≤ 0) or (a ≥ 0 and b ≤ 0)

- PSBD and C∗0 :

M is PSBD and M is C∗0 if and only if either (a ≥ 0 and b ≥ 0) or (a ≤ 0 and b ≤ 0)

and also verify the following implication:(
z ≥ 0, Mz ≥ 0 and zt Mz = 0

)
⇒ Mtz ≤ 0

which is equivalent to(
z ≥ 0, a(btz) ≥ 0 and (btz)(atz)t = 0

)
⇒ b(atz) ≤ 0

i.e., (
z ≥ 0, either atz = 0 or btz = 0

)
⇒ atz = 0

i.e.,

z ≥ 0, btz = 0 ⇒ atz = 0

i.e.,

bi = 0 ⇒ ai = 0 ∀i
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- PSBD and C+
0 :

M is PSBD and C+
0 if and only if either (a ≥ 0 and b ≥ 0) or (a ≤ 0 and b ≤ 0) and

also verify the following implication:(
z ≥ 0 and zt Mz = 0

)
⇒ (M + Mt)z = 0

which is equivalent to(
z ≥ 0 and (btz)(atz)t = 0

)
⇒ a(btz) + b(atz) = 0

i.e., (
z ≥ 0 either atz = 0 or btz = 0

)
⇒ a(btz) + b(atz) = 0

Now if,

z ≥ 0 atz = 0 ⇒ a(btz) = 0

i.e.,

z ≥ 0 atz = 0 ⇒ btz = 0

i.e.,

ai = 0 ⇒ bi = 0 ∀i

and if,

z ≥ 0 btz = 0 ⇒ b(atz) = 0

i.e.,

z ≥ 0 btz = 0 ⇒ atz = 0

i.e.,

bi = 0 ⇒ ai = 0 ∀i

both cases means,

ai = 0 ⇔ bi = 0 ∀i

- Merely GPSBD matrix:

Under the hypothesis, the matrix M has exactly n possibilities, such as:

Mi =



0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0
... . . .

...
...

... . . .
...

−|aib1| . . . −|aibi−1| |aibi| −|aibi+1| . . . −|aibn|
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0


i = 1, ..., n
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without loss of generality here we take i = 1 and we denote M1 = M, where either

at =
(
|a1| 0 0 . . . 0

)
≥ 0 and bt =

(
|b1| −|b2| −|b3| . . . −|bn|

)
, where

bi 6= 0 ∀i, only one coordinate of b is positive, a1b1 ≥ 0 and a1bj < 0. Now for any

zt =
(

z1 z2 z3 . . . zn

)
∈ Rn,

zt Mz = z1(|a1b1|z1 − |a1b2|z2 − |a1b3|z3 − . . .− |a1bn|zn) < 0

and (Mtz)t = z1

(
|a1b1| −|a1b2| −|a1b3| . . . −|a1bn|

)
which is not unisigned

and M is not PSBD. For GPSBD matrix

M̃tz =



(1− g1)|a1b1| − g1 0 0 . . . 0

(g2 − 1)|a1b2| −g2 0 . . . 0

(g3 − 1)|a1b3| 0 −g3 . . . 0
...

...
...

. . .
...

(gn − 1)|a1bn| 0 0 . . . −gn





z1

z2

z3
...

zn



⇒ M̃tz =



−g1(z1 + |a1b1|z1) + |a1b1|z1

−g2(z2 − |a1b2|z1) + |a1b2|z1

−g3(z3 − |a1b3|z1) + |a1b3|z1
...

−gn(zn − |a1bn|z1) + |a1bn|z1


Now with the choice of g1 = 1 and the rest of gi = 0 for i = 2, 3, 4...n, then we have

(M̃tz)t = z1

(
−1 −|a1b2| −|a1b3| . . . −|a1bn|

)
which is unisigned. Thus M is Merely GPSBD matrix.

- Merely WGPSBD matrix:

Under the hypothesis, the matrix M has exactly n possibilities, such as:

Mi =



0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0
... . . .

...
...

... . . .
...

|aibi| . . . |aibi−1| −|aibi| |aibi+1| . . . |aibn|
... . . .

...
...

... . . .
...

0 . . . 0 0 0 . . . 0

0 . . . 0 0 0 . . . 0


i = 1, ..., n

without loss of generality here we take i = 1 we denote M1 = M, where either at =(
|a1| 0 0 . . . 0

)
≥ 0 and bt =

(
−|b1| |b2| |b3| . . . |bn|

)
, where bi 6= 0 ∀i,
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only one coordinate of b is negative, a1b1 ≤ 0 and a1bj > 0. Now for any zt =(
z1 z2 z3 . . . zn

)
∈ Rn,

zt Mz = z1(−|a1b1|z1 + |a1b2|z2 + |a1b3|z3 + . . . + |a1bn|zn) < 0

For WGPSBD matrix

M̃tz =



(g1 − 1)|a1b1| − g1 0 0 . . . 0

(1− g2)|a1b2| −g2 0 . . . 0

(1− g3)|a1b3| 0 −g3 . . . 0
...

...
...

. . .
...

(1− gn)|a1bn| 0 0 . . . −gn





z1

z2

z3
...

zn



⇒ M̃tz =



−g1(z1 − |a1b1|z1)− |a1b1|z1

−g2(z2 + |a1b2|z1) + |a1b2|z1

−g3(z3 + |a1b3|z1) + |a1b3|z1
...

−gn(−zn + |a1bn|z1) + |a1bn|z1


There is no g1,g2,g3...gn exists for which M satisfy the definition of GPSBD matrix.

Now with the choice of g1 = 1 and the rest of gi = 0 for i = 2, 3, 4...n, then we have

(M̃tz)t = z1

(
−1 |a1b2| |a1b3| . . . |a1bn|

)
where one coordinate of M̃tz is different sign. Thus M is Merely WGPSBD matrix.

This complete the proof. �

The symmetric part of the Theorem (2.2.1) is quite clear. So we are going to illustrate some

examples that are related to the asymmetric part of the previous theorem and the reader

will have a clear idea about this theorem.

M is Strictly PSBD

Let bt =
(
−1 −2

)
< 0 and at =

(
−1 2

)
. Then we have zt Mz = z1

2 − 4z2
2 and if

zt Mz < 0 then Mtz is strictly unisigned. So M is Strictly PSBD.

M is Strictly PSBD and Strictly C0

Let bt =
(

2 1
)
> 0 and at =

(
1 2

)
> 0. Then we have zt Mz = (2z1 + z2)(z1 + 2z2)

and if zt Mz < 0 then Mtz is strictly unisigned; so M is Strictly PSBD. Moreover, for any

z ≥ 0 , z 6= 0 we have zt Mz > 0; then M is also Strictly C0.
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M is Strictly PSBD and Strictly Conegative

Let bt =
(
−1 −2

)
< 0 and at =

(
1 2

)
> 0. Then we have zt Mz = −(z1 + 2z2)2 and

if zt Mz < 0 then Mtz is strictly unisigned; so M is Strictly PSBD. Moreover, for any z ≥ 0 ,

z 6= 0 we have zt Mz < 0; thus M is also Strictly Conegative.

M is Strictly PSBD and C0

Let bt =
(
−1 −2

)
< 0 and at =

(
−1 0

)
≤ 0. Then we have zt Mz = z1(z1 + 2z2)

and if zt Mz < 0 then Mtz is strictly unisigned; so M is Strictly PSBD. Moreover, for any

z ≥ 0 we have zt Mz > 0; thus M is also C0.

M is PSBD

Let bt =
(

1 0
)
≥ 0 and at =

(
1 −1

)
. Then we have zt Mz = z1(z1 − z2) and if

zt Mz < 0 then Mtz ≤ 0 or Mtz ≥ 0, so M is PSBD.

M is PSBD and C0

Let bt =
(

2 0
)
≥ 0 and at =

(
0 1

)
≥ 0. Then we have zt Mz = 2z1z2. Now if

zt Mz < 0 for any z ∈ R2 then Mtz is unisigned, so M is PSBD. Moreover, for any z ≥ 0 we

have zt Mz ≥ 0, then M is C0 matrix.

M is PSBD and Conegative

Let bt =
(
−1 0

)
≤ 0 and at =

(
0 2

)
≥ 0. Then we have zt Mz = −2z1z2. Now if

zt Mz < 0 for any z ∈ R2 then Mtz is unisigned, so M is PSBD. Moreover, for any z ≥ 0 we

have zt Mz ≤ 0, then M is Conegative matrix.

M is PSBD and C∗0
Let bt =

(
1 1 0

)
≥ 0 and at =

(
1 0 0

)
≥ 0 and also (ai = 0 whenever bi = 0).

Then we have zt Mz = z1(z1 + z2). Now if zt Mz < 0 then Mtz is unisigned. So M is PSBD.

On the other hand if Mz ≥ 0, zt Mz = 0 for any z ≥ 0 we can easily verify that Mtz ≤ 0.

Thus M is a C∗0 .

M is PSBD and C+
0

Let bt =
(

1 0 1
)
≥ 0 and at =

(
1 0 2

)
≥ 0 and also (ai = 0 if and only if bi = 0).

Then we have zt Mz = (z1 + 2z3)(z1 + z3). Now if zt Mz < 0 then Mtz is unisigned. So M

is PSBD. On the other hand, if zt Mz = 0 for any z ≥ 0, we have (M + Mt)z = 0. Thus M is

C+
0 as well.
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M is GPSBD but not PSBD matrix

Let at =
(

2 0 0
)
≥ 0 and bt =

(
1 −2 −2

)
, where bi 6= 0 for all i, only one

coordinate of b is positive and aibi ≥ 0, ∀i. Now for any zt =
(

z1 z2 z3

)
∈ R3, zt Mz =

2z1(z1 − 2z2 − 2z3). If zt Mz < 0 then

M̃tz =


2− 3g1 0 0

4g2 − 4 −g2 0

4g3 − 4 0 −g3




z1

z2

z3

 =


−3g1z1 + 2z1

−g2(−4z1 + z2)− 4z1

−g3(−4z1 + z3)− 4z1


It is very clear that Mtz is not unisigned. So, M is not PSBD matrix.

Now with the choice of g1 = 1, g2 = 0 and g3 = 0

[M̃tz]t = −z1

(
1 4 4

)
which is unisigned. Thus M is GPSBD matrix.

M is WGPSBD but not GPSBD matrix

Let at =
(

2 0 0
)
≥ 0 and bt =

(
−1 2 2

)
where bi 6= 0 for all i, only one coordinate

of b is negative and aibi ≤ 0 ∀i. Now for any zt =
(

z1 z2 z3

)
∈ R3, zt Mz = 2z1(−z1 +

2z2 + 2z3). If zt Mz < 0 then

M̃tz =


g1 − 2 0 0

4− 4g2 −g2 0

4− 4g3 0 −g3




z1

z2

z3

 =


g1z1 − 2z1

−g2(−4z1 + z2) + 4z1

−g3(−4z1 + z3) + 4z1


It is very clear that Mtz is not unisigned. So, M is not PSBD matrix.

There is no g1, g2, g3 exists for which M satisfies the definition of a GPSBD matrix. Now

with the choice of g1 = 1, g2 = 0 and g3 = 0

[M̃tz]t = z1

(
−1 4 4

)
where one coordinate of M̃tz is different sign. Thus M is WGPSBD matrix.

2.2.2 Matrix of rank greater then and equal to two

We split this section within two subsections. At first we start with rank(2) and order(2)

matrix then our work go through by matrix of rank(M) ≥ 2. Each of these section we

found some important and interesting properties of all derived PSBD matrix classes.
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Matrix of rank(2) and order (2)

The following proposition is one of the fundamental proposition for derived PSBD matrix

classes.

Proposition 2.2.2. ([8], Proposition 2.2; [49], Proposition 3.2) Suppose M be a Merely PSBD

matrix or a nondegenerate Merely GPSBD matrix, then ν−(M + Mt) = 1.

The above proposition is already proved for PSBD and GPSBD matrices. According to the

inclusion relationship among the PSBD matrix classes we can say that this is also true for

WGPSBD matrix.

Proposition 2.2.3. Suppose M be a nondegenerate Merely WGPSBD matrix, then

ν−(M + Mt) = 1

In the same way of PSBD and GPSBD, we can easily verify that the above Proposition is

also true for nondegenerate Merely WGPSBD matrices. It is enough to find a contradiction

for nondegenarecy assumption.

Theorem 2.2.4. ([42], Theorem 3.3) PSBD matrices are invariant under principal rearrangement,

i.e., if a matrix M is PSBD then for any permutation matrix P, the matrix PMPt is PSBD.

The above theorem is true for PSBD matrix. For the sake completeness of derived PSBD

matrix classes, our intention is to prove that theorem for GPSBD and WGPSBD matrices.

Theorem 2.2.5. GPSBD and WGPSBD matrices are invariant under principal rearrangement.

Proof:

- Let M be a GPSBD matrix and P be any permutation matrix. For any z ∈ Rn, let

y = Ptz. There exist two nonnegative diagonal matrices G and H with G + H = In and

for z ∈ Rn such that ztPMPtz = yt My < 0, we have either M̃ty = (−G + HMt)y ≥ 0 or

M̃ty = (−G + HMt)y ≤ 0, which implies (−G + HMt)Ptz ≤ 0 or (−G + HMt)Ptz ≥ 0.

Since P is just a permutation matrix then we have P(−G + HMt)Ptz ≥ 0 or

P(−G + HMt)Ptz ≤ 0, which implies (−PGPt + (PHPt)(PMtPt))z ≥ 0 or

(−PGPt + (PHPt)(PMtPt))z ≤ 0. It is enough to take G′ = PGPt and H′ = PHPt

to have G′ + H′ = PPt = In. It follows that either (−G′ + H′(PMtPt))z ≥ 0 or

(−G′ + H′(PMtPt))z ≤ 0. Which means that PMPt is a GPSBD matrix. The converse

follows from the fact that PtP = In and M = Pt(PMPt)(Pt)t.

- Let M be a WGPSBD and P be any any permutation matrix. For any z ∈ Rn, let y = Ptz.

There exist two nonnegative diagonal matrices G and H with G + H = In and for z ∈ Rn
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such that ztPMPtz = yt My < 0, we have at most one coordinate of M̃tz = (−G + HMt)y

is different sign. Since P is just a permutation matrix then we have at most one coordinate

of P(−G + HMt)Ptz = −PGPt + (PHPt)(PMtPt) is different sign. It is enough to take

G′ = PGPt and H′ = PHPt to have G′ + H′ = PPt = In. This implies that at most one

coordinate of (−G′ + H′(PMtPt))z is different sign. It follows that PMPt is a WGPSBD

matrix. The converse follows from the fact that PtP = In and M = Pt(PMPt)(Pt)t. �

In the following, we focused our work in square matrix M of order(2) and rank(2) which is

not PSD:

M =

(
a b

c d

)
It is clear that such matrices are invertible, that means ad − bc 6= 0. Furthermore, we are

interested by PSBD, nondegenerate GPSBD and nondegenerate WGPSBD matrices of this

form. In all cases ν−(M + Mt) = 1, which implies to 4ad− (b + c)2 ≤ 0.

Theorem 2.2.6. Let M ∈ R2×2 be any matrix but not PSD. Then M is either Merely PSBD or

nondegenerate Merely GPSBD or nondegenerate Merely WGPSBD matrix.

Proof: Let M ∈ R2×2 be any matrix. There exist a z ∈ R2 such that zt Mz < 0. Then Mtz has

the following possibilities:(
+

+

)
or

(
−
−

)
or

(
+

0

)
or

(
0

+

)
or

(
−
0

)
or

(
0

−

)

thus in all theses above cases M is PSBD. And we still have the following two cases of Mtz,

such that: (
+

−

)
or

(
−
+

)
which seems that in these above cases M is not PSBD. But for Merely GPSBD and Merely

WGPSBD matrices if there exists two nonnegative diagonal matrices G and H with G+ H =

I2 then the last above two cases where M is not PSBD matrix have the following results of

M̃tz = −(G + HMt)z:(
+

+

)
or

(
−
−

)
or

(
+

0

)
or

(
0

+

)
or

(
−
0

)
or

(
0

−

)

if it happens then the above all cases M ∈ nondegenerate Merely GPSBD. But we still have

the following two cases, such that:

(M̃tz)t =
(

+ −
)

or (M̃tz)t =
(
− +

)
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but in these cases M ∈ nondegenerate Merely WGPSBD. This complete the proof. �

Remark: The above theorem can be generalized easily for matrix of order 3.

Theorem 2.2.7. Let M be a square matrix of order(2) and rank(2) but not PSD, then M and Mt

both of them are Merely PSBD if and only if one of the following conditions holds:

i) a = d = 0 and either (bc < 0 where b + c > 0) or (bc > 0 where b + c < 0)

ii) a = 0 and either (bc < 0 where d > 0 and b + c > 0) or (bc > 0 where d < 0

and b + c < 0)

iii) d = 0 and either (bc < 0 where a > 0 and b + c > 0) or (bc > 0 where a < 0

and b + c < 0)

iv) a > 0, b = 0, c > 0, d > 0 and ad <
( c

2

)2

v) a > 0, b > 0, c = 0, d > 0 and ad <
(

b
2

)2

vi) a < 0, b < 0, c < 0, d < 0 and ad < bc

vii) a > 0, d > 0, b + c > 0, b 6= 0, c 6= 0, b 6= c and bc < ad <
(

b+c
2

)2

Proof: Let M be a square matrix of order(2) and rank(2). From Theorem 2.2 [8], M is Merely

PSBD if and only if

ν−(M + Mt) = 1, rank(M + Mt) = 2 and Ms =
2 det(M)

det(M + Mt)
(M + Mt) ≤ 0

which is equivalent to the following system

det(M) 6= 0, det(M + Mt) < 0, det(M)(M + Mt) ≥ 0 and (M + Mt) 6= 0

It is clear that M can not be a skew matrix. The above system is equivalent to
4ad− (b + c)2 < 0

ad− bc > 0 where a ≥ 0, d ≥ 0, b + c ≥ 0 with at least one inequality must be strict

ad− bc < 0 where a ≤ 0, d ≤ 0, b + c ≤ 0 with at least one inequality must be strict

In the following we are going to discuses all disjoint cases:

i) if a = d = 0 then M is Merely PSBD if and only if,

either (bc < 0 where b + c > 0) or (bc > 0 where b + c < 0).
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ii) if a = 0 then M is Merely PSBD and M is not in case(i) if and only if,

either (bc < 0 where d > 0 and b + c > 0) or (bc > 0 where d < 0 and b + c < 0).

iii) if d = 0 then M is Merely PSBD and M is not in the above cases if and only if,

either (bc < 0 where a > 0 and b + c > 0) or (bc > 0 where a < 0 and b + c < 0).

iv) if b = 0 then M is Merely PSBD and M is not in the above cases if and only if,

a > 0, d > 0, c > 0 and 4ad− c2 < 0.

v) if c = 0 then M is Merely PSBD and M is not in the above cases if and only if,

a > 0, b > 0, d > 0 and 4ad− b2 < 0.

vi) and vii) if now a 6= 0, b 6= 0, c 6= 0, d 6= 0, then M is Merely PSBD and M is not in the

above cases if and only if, ad <
(

b+c
2

)2
and

either (a > 0, d > 0, b + c ≥ 0 and ad > bc) or (a < 0, d < 0, b + c ≤ 0 and ad < bc)

which is equivalent to either
(

a > 0, d > 0, b + c > 0, b 6= c and bc < ad < ( b+c
2 )2

)
or (a < 0, b < 0, c < 0, d < 0 and ad < bc). �

Consequence:

• In the cases b = c = 0 or b + c = 0 the matrix M never be PSBD.

• In symmetric case b = c, the matrix M is Merely PSBD if and only if a ≤ 0, b < 0,

d ≤ 0 and ad < b2.

Following two Corollary are easily derived from the above theorem.

Corollary 2.2.8. Let M be a square matrix of order(2) and rank(2) but not PSD, then M, Mt and

M + Mt are Merely PSBD if and only if one of the following conditions holds:

i) a = 0, b < 0, c < 0 and d ≤ 0

ii) a < 0, b < 0, c < 0 and either d = 0 or (d < 0 and ad < bc).

Corollary 2.2.9. Let M be a square matrix of order(2) and rank(2) but not PSD, then M is C∗0 if

and only if one of the following conditions holds:

i) a = d = 0 and either 0 > b > −c or b > −c > 0

ii) a = 0, d > 0 and either 0 > b > −c or b > −c > 0

iii) a > 0, d = 0 and either 0 > b > −c or b > −c > 0
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iv) a > 0, b = 0, c > 0, d > 0 and ad < ( c
2 )

2

v) a > 0, b > 0, c = 0, d > 0 and ad < ( b
2 )

2

vi) a > 0, d > 0, b + c > 0 where b 6= 0, c 6= 0, b 6= c and bc < ad < ( b+c
2 )2

Proposition 2.2.10. Let M be a square matrix of order(2) and rank(2) but not PSD, then M and

Mt both of them are nondegenerate Merely GPSBD if and only if one of the following conditions

holds:

i) a = d = 0 and (bc < 0 where b + c < 0)

ii) a = 0 and either (bc < 0 where d < 0 and b + c < 0) or (d > 0 and b + c < 0)

iii) d = 0 and either (bc < 0 where a < 0 and b + c < 0) or (a > 0 and b + c < 0)

iv) b = 0, ad <
( c

2

)2 and either ad < 0

or (ad > 0 with either (c < 0 where a > 0) or (c > 0 where a < 0))

v) c = 0, ad <
(

b
2

)2
and either ad < 0

or (ad > 0 with either (b < 0 where a > 0) or (b > 0 where a < 0))

vi) a 6= 0, b 6= 0, c 6= 0, d 6= 0 and ad <
(

b+c
2

)2
with

– either ad < 0 and bc > 0

– or ad > 0, bc < 0 with either ((b + c) < 0 and a > 0) or ((b + c) > 0 and a < 0)

Proof: Let a vector z ∈ R2, zt =
(

z1 z2

)
such that zt Mz = az2

1 + dz2
2 + (b + c)z1z2 < 0.

Let G = diag(g1, g2) and H = diag(1− g1, 1− g2) are two nonnegative diagonal matrices

such that G + H = I2.

M̃tz = (−G + HMt)z =

(
−g1(z1 + az1 + cz2) + az1 + cz2

−g2(z2 + bz1 + dz2) + bz1 + dz2

)

and

(M̃t)tz = (−G + HM)z =

(
−g1(z1 + az1 + bz2) + az1 + bz2

−g2(z2 + cz1 + dz2) + cz1 + dz2

)
and it is clear that

Mtz =

(
az1 + cz2

bz1 + dz2

)
and Mz =

(
az1 + bz2

cz1 + dz2

)

The condition M is not PSBD means that M is not in any cases of Theorem 6.
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i) if a = d = 0 then zt Mz = (b + c)z1z2 < 0. Neither M nor Mt are Merely PSBD

implies bcz1z2 < 0, b + c 6= 0. It follows that either (bc < 0 where b + c < 0) or

(bc > 0 where b + c > 0), which is equivalent to either (0 < b < −c or b < −c < 0)

or (b > 0 and c > 0). In the first case, if we take b < 0 then it is necessary to choose

g1 = 1 and g2 = 0 to have (M̃tz)t =
(
−1 b

)
z1 unisigned and M̃tz 6= 0, and it is

necessary to choose g1 = 0 and g2 = 1 to have ((M̃t)tz)t =
(

b −1
)

z2 unisigned

and ((M̃t)tz)t 6= 0; similar reasoning for b > 0. For the second case, it is clear that

neither M nor Mt are nondegenerate Merely GPSBD matrix.

ii) if a = 0 and M is not in case(i). Let z such that zt Mz = dz2
2 + (b + c)z1z2 < 0. Neither

M nor Mt are Merely PSBD, which implies both of

Mtz =

(
cz2

bz1 + dz2

)
and Mz =

(
bz2

cz1 + dz2

)

are not unisigned, which implies that 2bcz1z2 + d(b + c)z2
2 < 0.

Assume that d < 0 and (bc < 0 where b + c < 0) which is equivalent to 0 < b <

−c or b < −c < 0. For the first case, since neither M nor Mt are PSBD, then necessarily

z1z2 > 0. So, without loss of generality, we take z1 > 0 and z2 > 0. According to the

follows conditions implies bz1 + dz2 > 0 and cz1 + dz2 < 0. Then it is necessary to

choose g1 = 0 and g2 = 1 to have 0 6= (M̃tz)t =
(

c −1
)

z2 < 0 and to choose

g1 = 1 and g2 = 0 to have 0 6= ((M̃t)tz)t =
(
−1 c

)
z2 < 0. Similar reasoning for

the second case (b < −c < 0).

Now assume that (d > 0 and b + c < 0). It is very clear that z1z2 > 0 by distinguish-

ing three cases (b < 0 and c < 0) or 0 < b < −c or b < −c < 0 and with similar

reasoning, we conclude that M nor Mt are nondegenerate Merely GPSBD matrix.

iii) In case(ii) we showed that when M =

(
0 b

c d

)
then M and Mt both of them are

nondegenerate Merely GPSBD matrix. Now let P =

(
0 1

1 0

)
be a order two permu-

tation matrix, then PMPt =

(
d c

b 0

)
which is nothing but the matrix according to

our hypothesis. Hence from this case it follows from Theorem 4 that PMPt and PMtPt

both of them are nondegenerate Merely GPSBD matrix.

iv) if b = 0 and M is not in any of the above cases. According to the base of the hypothesis

we have ad < ( c
2 )

2. However, the condition ad = ( c
2 )

2 is excluded because the fact

that there is no such z for which we have zt Mz < 0. Neither M nor Mt are Merely
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PSBD, which implies both of

Mtz =

(
az1 + cz2

dz2

)
and Mz =

(
az1

cz1 + dz2

)

are not unisigned.

Assume that a > 0, d < 0 and because zt Mz < 0, and M is not PSBD then necessarily

z1z2 > 0. So, without loss of generality, we take z1 > 0 and is not z2 > 0. According

to the follows conditions implies az1 + cz2 > 0 and cz1 + dz2 < 0. Then it is necessary

to choose g1 = 1 and g2 = 0 to have 0 6= (M̃tz)t =
(
−z1 dz2

)
≤ 0 and 0 6=

((M̃t)tz)t =
(
−z1 cz1 + dz2

)
≤ 0. Similar reasoning for a < 0, d > 0.

Again assume that a > 0, d > 0 and because zt Mz < 0, then necessarily cz1z2 < 0

and yet M is not PSBD then c < 0 and z1z2 > 0. So, without loss of generality, we

take z1 > 0 and is not z2 > 0. According to the follows conditions implies az1 + cz2 <

0 and cz1 + dz2 < 0. Then it is necessary to choose g1 = 0 and g2 = 1 to have

0 6= (M̃tz)t =
(

az1 + cz2 −z2

)
≤ 0 and to choose g1 = 1 and g2 = 0 to have

0 6= ((M̃t)tz)t =
(
−z1 cz1 + dz2

)
≤ 0.

Again assume that a < 0, d < 0. The fact ad < ( c
2 )

2 implies that c > 0 and z1z2 > 0.

So, without loss of generality, we take z1 > 0 and is not z2 > 0. According to the

follows conditions implies az1 + cz2 > 0 and cz1 + dz2 > 0. Then it is necessary to

choose g1 = 1 and g2 = 0 to have 0 6= (M̃tz)t =
(
−z1 dz2

)
≤ 0 and to choose

g1 = 0 and g2 = 1 to have 0 6= ((M̃t)tz)t =
(

az1 −z2

)
≤ 0.

v) This case is the permutation rearrangement of case(iv). Thus from Theorem 4 we

can easily say that PMPt and PMtPt both of them are nondegenerate Merely GPSBD

matrix.

vi) if a 6= 0, b 6= 0, c 6= 0, d 6= 0 and M is not in any of the above cases. According to the

base of the hypothesis we have ad < ( b+c
2 )2. However, the condition ad = ( b+c

2 )2 is

excluded because the fact that there is no such z for which we have zt Mz < 0. Neither

M nor Mt are Merely PSBD, which implies both of

Mtz =

(
az1 + cz2

bz1 + dz2

)
and Mz =

(
az1 + bz1

cz1 + dz2

)

are not unisigned.

Assume that a > 0, d < 0 and because zt Mz < 0, and M is not PSBD then necessarily

z1z2 > 0. So, without loss of generality, we take z1 > 0 and is not z2 > 0. According

to the follows conditions implies bz1 + dz2 < 0 and cz1 + dz2 < 0. Then it is necessary
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to choose g1 = 1 and g2 = 0 to have 0 6= (M̃tz)t =
(
−z1 bz1 + dz2

)
≤ 0 and

0 6= ((M̃t)tz)t =
(
−z1 cz1 + dz2

)
≤ 0. Similar reasoning for a < 0, d > 0.

Again assume that a > 0, d > 0 and because zt Mz < 0, then necessarily (b + c)z1z2 <

0 and yet M is not PSBD then (bc < 0 where (b + c) < 0) which is equivalent to

0 < b < −c or b < −c < 0 and z1z2 > 0. For the first case, since z1z2 > 0, so

without loss of generality, we take z1 > 0 and is not z2 > 0. According to the follows

conditions implies az1 + cz2 < 0 and cz1 + dz2 < 0. Then it is necessary to choose

g1 = 0 and g2 = 1 to have 0 6= (M̃tz)t =
(

az1 + cz2 −z2

)
≤ 0 and to choose g1 = 1

and g2 = 0 to have 0 6= ((M̃t)tz)t =
(
−z1 cz1 + dz2

)
≤ 0. Similar reasoning for

the second case.

Again assume that a < 0, d < 0. The fact ad < ( b+c
2 )2 implies that (bc < 0 where (b +

c) > 0) which is equivalent to b > −c > 0 or 0 > b > −c and z1z2 > 0. For the first

case, since z1z2 > 0, so without loss of generality, we take z1 > 0 and is not z2 > 0.

According to the follows conditions implies az1 + cz2 < 0 and cz1 + dz2 < 0. Then it is

necessary to choose g1 = 0 and g2 = 1 to have 0 6= (M̃tz)t =
(

az1 + cz2 −z2

)
≤ 0

and to choose g1 = 1 and g2 = 0 to have 0 6= ((M̃t)tz)t =
(
−z1 cz1 + dz2

)
≤ 0.

Similar reasoning for the second case. �

Matrix of rank(M) ≥ 2

In this section we will study rank greater than and equal to two matrix in general. Before

going in details it is necessary to introduce some more notations which are essential for this

section. These are:

• M = [aij]1≤i,j≤n and rank(M) ≥ 2

• −G + MH = M̃

• Z = {z ∈ Rn : zt Mz < 0}

• Z̃ = {z ∈ Rn : zt M̃tz < 0}

• I+ = {i : zi > 0, z ∈ Z}

• I− = {i : zi < 0, z ∈ Z}

• J̃+ = {i : (M̃tz)i > 0, z ∈ Z}

• J̃− = {i : (M̃tz)i < 0, z ∈ Z}

• J̃0 = {i : (M̃tz)i = 0, z ∈ Z}
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After having a careful examination of the definition of GPSBD and WGPSBD matrix classes

we have some interesting results. Some conditions are already proposed on [49] for GPSBD

matrix, such as : if

• Z ⊆ Z̃, and M̃ is PSBD.

• H = δIn, and M̃ is PSBD.

• Z = {z : zt Mz < 0} ⊆ Rn
+ ∪−Rn

+.

• aii ≥ 0 ∀i and there exists an i = i0 such that Mi0. ≥ 0 and aij = 0 ∀i, j, i 6= i0, j 6= i

• aii ≥ 0 ∀i and there exists a j = j0 such that M.j0 6= 0 and aij = 0 ∀i, j, i 6= j, j 6= j0

We are willing to add some more conditions for that class as well as for WGPSBD ma-

trix. Interestingly the proof of all the above and the following propositions are depend on

diagonal matrix H.

Proposition 2.2.11. M is a GPSBD matrix if aii ≥ 0 ∀i and there exists an i = i0 such that

Mi0. ≤ 0 and aij = 0 ∀i, j, i 6= i0, j 6= i

Proof: Under the hypothesis of the proposition matrix M has the following form

M =



|a11| 0 0 · · · 0 · · · 0

0 |a22| 0 · · · 0 · · · 0

0 0 |a33| · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

−|ai01| −|ai02| −|ai03| · · · 0 · · · −|ai0n|
...

...
...

. . .
...

. . .
...

0 0 0 · · · 0 · · · |ann|


Without loss of generality assume that i0 = 1, i 6= 1, j 6= i ∀i, j where aij = 0, aii = |aii|,
a1j = −|a1j| and j 6= 1. Then the above matrix M becomes as follows:

M =



0 −|a12| −|a13| . . . −|a1n|
0 |a22| 0 . . . 0

0 0 |a33| . . . 0
...

...
...

. . .
...

0 0 0 . . . |ann|


Let zt =

(
z1 z2 z3 . . . zn

)
∈ Rn, such that

zt Mz = z1(0− |a12|z2 − |a13|z3 − . . .− |a1n|zn) + |a22|z2
2 + |a33|z2

3 + ... + |ann|z2
n < 0

42



2.2. SOME MORE PROPERTIES OF DERIVED PSBD MATRIX CLASSES 2

and

M̃tz =





−g1 0 0 . . . 0

0 −g2 0 . . . 0

0 0 −g3 . . . 0
...

...
...

. . .
...

0 0 0 . . . −gn


+



h1 0 0 . . . 0

0 h2 0 . . . 0

0 0 h3 . . . 0
...

...
...

. . .
...

0 0 0 . . . hn





0 0 0
. . . 0

−|a12| |a22| 0 . . . 0

−|a13| 0 |a33| . . . 0
...

...
...

. . .
...

−|a1n| 0 0 . . . |ann|







z1

z2

z3
...

zn



i.e,

M̃tz =



−g1 0 0
. . . 0

(1− g2)(−|a12|) −g2 + (1− g2)|a22| 0
. . . 0

(1− g3)(−|a13|) 0 −g3 + (1− g3)|a33|
. . . 0

...
...

...
. . .

...

(1− gn)(−|a1n|) 0 0 . . . −gn + (1− gn)|ann|





z1

z2

z3
...

zn


i.e,

M̃tz =



−g1

(1− g2)(−|a12|)z1 + (−g2 + (1− g2)|a22|)z2

(1− g3)(−|a13|)z1 + (−g3 + (1− g3)|a33|)z3
...

(1− gn)(−|a1n|)z1 + (−gn + (1− gn)|ann|)zn



Now if we take gi =
|aii|

1 + |aii|
then we have

M̃tz = z1



0

− |a12|
1+a22

− |a13|
1+a33
...

− |a1n|
1+ann


which is unisigned. Thus M is GPSBD matrix. �

Proposition 2.2.12. M is a WGPSBD matrix if aii ≥ 0 ∀i and there exists an i = i0 such that

either at least (n − 1) coordinates of Mi0. ≥ 0 or at least (n − 1) coordinates of Mi0. ≤ 0 and

aij = 0 ∀i, j, i 6= i0, j 6= i.
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Proof: Under the hypothesis of the proposition matrix M has the following form

M =



|a11| 0 0 · · · 0 · · · 0

0 |a22| 0 · · · 0 · · · 0

0 0 |a33| · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

−|ai01| |ai02| |ai03| · · · 0 · · · |ai0n|
...

...
...

. . .
...

. . .
...

0 0 0 · · · 0 · · · |ann|



or M =



|a11| 0 0 · · · 0 · · · 0

0 |a22| 0 · · · 0 · · · 0

0 0 |a33| · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

|ai01| −|ai02| |ai03| · · · 0 · · · |ai0n|
...

...
...

. . .
...

. . .
...

0 0 0 · · · 0 · · · |ann|



or M =



|a11| 0 0 · · · 0 · · · 0

0 |a22| 0 · · · 0 · · · 0

0 0 |a33| · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

|ai01| |ai02| −|ai03| · · · 0 · · · |ai0n|
...

...
...

. . .
...

. . .
...

0 0 0 · · · 0 · · · |ann|


,

. . . or M =



|a11| 0 0 · · · 0 · · · 0

0 |a22| 0 · · · 0 · · · 0

0 0 |a33| · · · 0 · · · 0
...

...
...

. . .
...

. . .
...

|ai01| |ai02| |ai03| · · · 0 · · · −|ai0n|
...

...
...

. . .
...

. . .
...

0 0 0 · · · 0 · · · |ann|


where at least (n − 1) coordinate of Mi0. ≥ 0. Or when at least (n − 1) coordinate of

Mi0. ≤ 0 we will also find just the opposite form of M.
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Without loss of generality assume that i0 = 1, i 6= 1, j 6= i ∀i, j where aij = 0, aii = |aii|,
(n− 1) coordinate of a1j = |a1j| and j 6= 1. Then the above matrix M becomes as follows:

M =



0 −|a12| |a13| . . . |a1n|
0 |a22| 0 . . . 0

0 0 |a33| . . . 0
...

...
...

. . .
...

0 0 0 . . . |ann|


where we choose the second coordinate of M is negative (reader can choose as they want

to). Let zt =
(

z1 z2 z3 . . . zn

)
∈ Rn, such that

zt Mz = z1(0− |a12|z2 + |a13|z3 + . . . |a1n|zn) + |a22|z2
2 + |a33|z2

3... + |ann|z2
n < 0

For WGPSBD matrix

M̃tz =





−g1 0 0 . . . 0

0 −g2 0 . . . 0

0 0 −g3 . . . 0
...

...
...

. . .
...

0 0 0 . . . −gn


+



h1 0 0 . . . 0

0 h2 0 . . . 0

0 0 h3 . . . 0
...

...
...

. . .
...

0 0 0 . . . hn





0 0 0
. . . 0

−|a12| |a22| 0 . . . 0

|a13| 0 |a33| . . . 0
...

...
...

. . .
...

|a1n| 0 0 . . . |ann|







z1

z2

z3
...

zn


i.e,

M̃tz =



−g1 0 0
. . . 0

(1− g2)(−|a12|) −g2 + (1− g2)|a22| 0
. . . 0

(1− g3)(|a13|) 0 −g3 + (1− g3)|a33|
. . . 0

...
...

...
. . .

...

(1− gn)(|a1n|) 0 0 . . . −gn + (1− gn)|ann|





z1

z2

z3
...

zn


i.e,

M̃tz =



−g1z1

(1− g2)(−|a12|)z1 + (−g2 + (1− g2)|a22|)z2

(1− g3)(|a13|)z1 + (−g3 + (1− g3)|a33|)z3
...

(1− gn)(|a1n|)z1 + (−gn + (1− gn)|ann|)zn


Now if we take gi =

|aii|
1 + |aii|

then we have

M̃tz = z1



0

− |a12|
1+|a22|
|a13|

1+|a33|
...
|a1n|

1+|ann|


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where (n− 1) coordinates of M̃tz are unisigned. Thus M is WGPSBD matrix. �

2.3 Derived PSBD matrix classes and complementarity results

The objective of this section is to summarize the known results on complementarity prob-

lems and to further the study of properties of derived PSBD matrix classes.

2.3.1 PSBD matrix

This section includes a series of existence and several properties of solutions to a linear

complementarity problem with such PSBD matrices. For better understanding we suggest

our reader to see [9, 42, 61].

In the previous section we were studying thoroughly the rank one matrix. The following

result is resuming from (2.2.1) for the solvability then the feasibility of the LCP(M, q). As

we know from [4] and [26] that , if M ∈ Rn×n is Strictly C0 or C+
0 or C∗0 then for any q ∈ Rn

the LCP(M,q) has a solution.

Theorem 2.3.1. Let M = abt ∈ Rn×n, a, b ∈ Rn, a, b 6= 0 be a PSBD matrix. Suppose either

a ≥ 0 or a ≤ 0 when b 6= δa for any δ > 0. Then M ∈ Q0 if and only if one or more of the following

conditions hold:

• M is PSD;

• a and b have opposite signs;

• a and b have the same sign and

bi = 0⇒ ai = 0

Proof:

Case-i. There exists a δ > 0 so that b = δa. It is easy to see that M is PSD and hence

M ∈ Q0.

Case-ii. For all δ > 0, b 6= δa. In this case it follows from ([8], Proposition 2.1) that either

b ≥ 0 or b ≤ 0. Under our hypothesis about a, either M ≥ 0 or M ≤ 0. If M ≤ 0, then

M ∈ Q0. But if M ≥ 0, then from [45], it is easy to see that M ∈ Q0 if and only if

bi = 0⇒ ai = 0 ∀i = {1, ..., n}
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�

This above theorem enable us to have the following corollary.

Corollary 2.3.2. If rank(M) = 1 and M ∈ C0, then LCP(M,q) is processable by LEMKE’S algo-

rithm whenever bi = 0⇒ ai = 0.

Note that any PSBD matrix M = abt ∈ Rn×n, a, b ∈ Rn, a, b 6= 0 is a S f matrix if ai = bi = 0

or aibi > 0 ∀i = 1, ..., n.

Theorem 2.3.3. Suppose M ∈ Rn×n is a PSBD matrix with rank(M) ≥ 2. Then M is a Q0

matrix.

Proof: By ([8], Theorem 2.1) Mt is a PSBD matrix. Also by the same theorem , either M ∈
PSD or (M + Mt) ≤ 0 or M ∈ C∗0 . If M ∈ C∗0 then M ∈ Q0 (1.2.5). Now if (M + Mt) ≤ 0

and M is not skew-symmetric, then by ([42], Lemma 3.2) it follows that M ≤ 0. In this case

M ∈ Q0 (1.2.5). However, if M is skew-symmetric, then M ∈ PSD. Therefore M ∈ Q0.

We obtain the following corollary from the above theorem.

Corollary 2.3.4. Suppose M ∈ Rn×n is a PSBD matrix with rank(M) ≥ 2. Then LCP(M,q) is

processable by LEMKE’S algorithm.

Under some additional condition there is an interesting relation between derived PSBD

matrix class and P0 matrix.

Theorem 2.3.5. Suppose M ∈ Rn×n be a PSBD ∩ C0, then M ∈ P0.

Proof: To proof that M ∈ P0, it is enough to show that Mt ∈ P0. From [17] it is enough to

show that for any nonzero z, maxzi 6=0[zi(Mtz)i] ≥ 0. Given z ∈ Rn, let I+ = {i : zi > 0} and

I− = {i : zi < 0} . We need to consider three cases:

Case-i. I− = ∅. Then zt Mtz = zt Mz ≥ 0 as M is C0. Hence maxi[zi(Mtz)i] ≥ 0.

Case-ii. I+ = ∅. Then (−z)t Mt(−z) = zt Mz ≥ 0 as M is C0. Hence maxi[zi(Mtz)i] ≥ 0.

Case-iii. I+ 6= ∅ and I− 6= ∅. Suppose that maxi[zi(Mtz)i] < 0. Now zt Mz = zt Mtz =

∑i[zi(Mtz)i] < 0. This implies (Mtz)i ≥ 0 ∀i or (Mtz)i ≤ 0 ∀i, since M is a PSBD matrix.

Suppose (Mtz)i ≥ 0 ∀i. Then for all i ∈ I+, zi(Mtz)i ≥ 0. But since maxi[zi(Mtz)i] < 0, we

get zi(Mtz)i < 0 ∀i ∈ I+. This leads to a contradiction. Therefore, maxi[zi(Mtz)i] ≥ 0. Simi-

larly , when (Mtz)i ≤ 0 ∀i ∈ I−, then consider zi(Mtz)i ≥ 0. But since maxi[zi(Mtz)i] < 0,

we get zi(Mtz)i < 0 ∀i ∈ I−.This leads to a contradiction. This completes the proof. �
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From this above theorem it is establish that PSBD matrix under some conditions are able to

obtain the unique solution of LCP(M,q). However the following example will shows that

in general every PSBD matrix need not to be a P0 matrix.

Example: Consider the matrix

M =

(
0 −1

−1 0

)

Then for any zt =
(

z1 z2

)
, zt Mz = −2z1z2 < 0, implies z1 and z2 are same sign. M ∈

PSBD, since (Mtz)t =
(
−z2 −z1

)
, implies Mtz is unisigned but M 6∈ P0.

Theorem 2.3.6. ([42], Theorem 3.6) Suppose M is a PSBD ∩ C0 matrix with rank(M) ≥ 2, then

M ∈ Rn×n is a S f matrix.

From the previous theorem it is clear that the matrix M both Row and Column Sufficient.

As we know from our previous chapter, if M is RS f then for each vector q ∈ Rn, if (x∗, λ∗)

is a K.K.T. pair of the QP (1.0.3), then x∗ ∈ Sol(M, q). And in addition we know from see [3],

if M is CS f then for each q ∈ Rn, the LCP(M,q) has (possibly empty) convex solution set.

However the following example will show that PSBD matrix need not to be a Q0 matrix in

general.

Example: Consider the matrix

M =

(
1 0

1 0

)

Then for any zt =
(

z1 z2

)
, (Mtz)t =

(
z1 + z2 0

)
, implies Mtz is either nonnegative

or nonpositive, that means Mtz is unisigned. Hence M ∈ PSBD. Taking qt =
(
−1 −2

)
,

note that LCP(M,q) is feasible but has no solution. Therefore M is not a Q0 matrix.

2.3.2 GPSBD matrix

In this section we summarize the known results of GPSBD matrices. This class of matrices

has a practical relevance to the study of quadratic programming and interior point algo-

rithms. In addition, the applicability of this matrix class in LEMEK’S algorithm extends the

class of LCP(M,q) solvable by the same algorithm. For details see [42, 49].

The next theorem is exists for PSBD matrix and we have been shown it in our previous

section.

Theorem 2.3.7. ([42], Theorem 3.4) Suppose M ∈ Rn×n be a GPSBD ∩ C0, then M ∈ P0.
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So, this theorem prove that GPSBD matrix under some additional conditions are able to

obtain the unique solution for LCP(M,q) and as like as PSBD matrix, GPSBD matrix need

not to be P0 in general.

Example: Consider the matrix

M =

(
0 −1

−2 3

)

Then for any zt =
(

z1 z2

)
, zt Mz = −3z1z2 + 3z2

2 < 0, implies z1 and z2 are same sign.

M ∈ GPSBD, since

M̃tz =

(
−g1(z1 − 2z2)− 2z2

−g2(−z1 + 4z2)− z1 + 3z2

)

Now, with the choice of g1 = 0 and g2 = 1, we have (M̃tz)t =
(
−2 −1

)
z2 which implies

M̃tz is unisigned but M 6∈ P0.

MOHAN, NEOGY and DAS [41] shows that if M is PSBD ∩ C0 matrix of rank(M) ≥ 2, then

M is sufficient. However NEOGY and DAS [49] shows that a GPSBD ∩ C0 matrix need not

to be S f , though it is a RS f matrix.

Theorem 2.3.8. ([42], Theorem 3.5) M ∈ Rn×n is a Merely GPSBD ∩ C0 with 0 < hi < 1 ∀i,

where H = diag(hi) , then M is a RS f matrix.

Remark: Note that the assumption in the above theorem 0 < hi < 1 ∀i, where H =

diag(hi) cannot be relaxed. The following example will help us to better understand that.

Example: Consider the matrix

M =


1 0 0

2 1 0

10 0 0


Not that M is C0 but it is not RS f . For zt =

(
−1 −1 1

)
, zt Mz < 0. Clearly M is not

PSBD and we have

M̃tz =


1− 2g1 2− 2g1 10− 10g1

0 1− g2 0

0 0 −g3




z1

z2

z3


i.e.,

M̃tz


−g1(2z1 + 2z2 + 10z3) + (z1 + 2z2 + 10z3)

−2g2 + z2

−g3z3

 =


−6g1 + 7

−2g2 + 1

−g3


49



2.3. DERIVED PSBD MATRIX CLASSES AND COMPLEMENTARITY RESULTS 2

It is easy to see that no g1, g2, g3 exists where 0 < gi < 1 ∀i, i.e., no h1, h2, h3 exists where

0 < hi < 1 ∀i for which the definition of GPSBD matrix is satisfied. However with the

choice g1 = 1
2 , g2 = 1

2 , g3 = 0, M is a Merely GPSBD matrix.

As a consequence of the characterization of RS f matrices:

For each vector q ∈ Rn, if (z∗, u∗) is a K.K.T. pair of the quadratic program QP(M,q).:

[min zt(Mz + q). z ≥ 0, Mz + q ≥ 0], then z∗ solves LCP(M,q).

Theorem 2.3.9. Assume that M is a nonnegative Merely GPSBD with 0 < hi < 1 ∀i where

H = diag(hi), then M ∈ C∗0 .

Proof: By Theorem (2.3.8), M is RS f . Therefore, M ∈ Q0 (1.2.5). As we know from [45] that,

for any nonnegative Q0 matrix Mi. 6= 0⇒ aii > 0. Let α = {i : aii > 0}. Then zt Mz = 0 for

zα = 0. Now it is easy to check that for (0, zα), Mz ≥ 0 implies Mtz ≤ 0. Thus M ∈ C∗0 . �

2.3.3 WGPSBD matrix

WGPSBD class is the latest derived PSBD matrix class. This is the most wider class of PSBD

matrix class.

Theorem 2.3.10. Suppose M ∈ Rn×n be a WGPSBD ∩ C0 matrix. For z ∈ Z, assume that

I+ ∩ ( J̃+ ∪ J̃0) 6= ∅ or I− ∩ ( J̃− ∪ J̃0) 6= ∅, then M ∈ P0.

Proof: To show that M ∈ P0, it is enough to show that Mt ∈ P0. From [17] it is enough to

show that for any nonzero z, maxzi 6=0[zi(Mtz)i] ≥ 0. We need to consider three cases:

Case-i. I− = ∅. Then zt Mtz = zt Mz ≥ 0 as M is C0. Hence maxi[zi(Mtz)i] ≥ 0.

Case-ii. I+ = ∅. Then (−z)t Mt(−z) = zt Mz ≥ 0 as M is C0. Hence maxi[zi(Mtz)i] ≥ 0.

Case-iii. I+ 6= ∅ and I− 6= ∅. Suppose that maxzi 6=0[zi(Mtz)i] < 0. Then zt Mz =

zt Mtz = ∑i[zi(Mtz)i] < 0. By the definition of WGPSBD matrix, this implies at least (n− 1)

coordinates of M̃tz are either nonnegative or nonpositive .

By assumption I+∩ ( J̃+∪ J̃0) 6= ∅ or I−∩ ( J̃−∪ J̃0) 6= ∅. Suppose at least (n− 1) coordinates

of M̃tz = −gizi + hi(Mtz)i ≥ 0. Then for i ∈ I+ ∩ ( J̃+ ∪ J̃0) 6= ∅, −giz2
i + hizi(Mtz)i ≥ 0.

But since maxzi 6=0[zi(Mtz)i] < 0, we get −giz2
i + hizi(Mtz)i < 0 for i ∈ I+ ∩ ( J̃+ ∪ J̃0) 6=

∅. This leads to a contradiction. Therefore, maxzi 6=0[zi(Mtz)i] ≥ 0. Similarly , when at

least (n − 1) coordinates of M̃tz = −gizi + hi(Mtz)i ≤ 0 then for I− ∩ ( J̃− ∪ J̃0) 6= ∅,

−giz2
i + hizi(Mtz)i ≥ 0. But since maxzi 6=0[zi(Mtz)i] < 0, we get −giz2

i + hizi(Mtz)i <
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0 ∀i ∈ I− ∩ ( J̃− ∪ J̃0). This leads to a contradiction. This completes the proof. �

However, the following example will shows that every WGPSBD matrix need not to be P0

in general.

Example: Consider the matrix

M =

(
0 3

1 −2

)

Then for any zt =
(

z1 z2

)
, zt Mz = 4z1z2 − 2z2

2 < 0, implies M ∈WGPSBD, since

M̃tz =

(
−g1(z1 + z2) + z2

−g2(3z1 − z2) + 3z1 − 2z2

)

Now, with the choice of g1 = 0 and g2 = 1, we have (M̃tz)t =
(

1 −1
)

z2 which implies

M ∈WGPSBD matrix but M 6∈ P0.

S.R. MOHAN, S.K. NEOGY and A.K. DAS [41] shows that if M is PSBD ∩ C0 matrix of

rank(M) ≥ 2, then M is S f . However S.K. NEOGY and A.K. DAS [48] shows that a

WGPSBD ∩ C0 matrix need not to be S f , but they also prove that WGPSBD matrix is RS f

matrix.

Theorem 2.3.11. M ∈ Rn×n is a WGPSBD ∩ C0 with 0 < hi < 1 ∀i where H = diag(hi). For

z ∈ Z , assume that assume that I+ ∩ ( J̃+ ∪ J̃0) 6= ∅ or I− ∩ ( J̃− ∪ J̃0) 6= ∅ , then M is a RS f

matrix.

Proof: Suppose [zi(Mtz)i] ≤ 0 for i = 1, ..., n. We need to consider three cases:

Case-i. I− = ∅. Then zt Mz = zt Mtz = ∑i zi(Mtz)i ≤ 0. Since M ∈ C0, [zi(Mtz)i] = 0 ∀i.

Case-ii. I+ = ∅. Then (−z)t Mt(−z) = zt Mtz = ∑i zi(Mtz)i ≤ 0 Since M ∈ C0,

zi(Mtz)i = 0 ∀i.

Case-iii. I+ 6= ∅ and I− 6= ∅. Suppose that there exists a vector z such that

zi(Mtz)i ≤ 0 for i = 1, ..., n and zs(Mtz)s < 0 for at least one s ∈ {1, ..., n}. Let

zt Mz = zt Mtz = ∑i[zi(Mtz)i] < 0. This implies at least (n − 1) coordinates of M̃tz are

either nonnegative or nonpositive.

By assumption I+ ∩ ( J̃+ ∪ J̃0) 6= ∅ or I− ∩ ( J̃− ∪ J̃0) 6= ∅. Suppose at least (n− 1) coordi-

nates of M̃tz = −gizi + hi(Mtz)i ≥ 0. Then for i ∈ I+ ∩ ( J̃+ ∪ J̃0), −giz2
i + hizi(Mtz)i ≥ 0.

This implies [zi(Mtz)i] ≥ gi
hi

z2
i > 0, for i ∈ I+ ∩ ( J̃+ ∪ J̃0). Since zi(Mtz)i ≤ 0 for i = 1, ..., n,

this leads to a contradiction. Therefore, zi(Mtz)i = 0, ∀i. Similarly , when at least (n− 1)

coordinates of M̃tz = −gizihi(Mtz)i ≤ 0 then for i ∈ I− ∩ ( J̃− ∪ J̃0), −giz2
i + hizi(Mtz)i ≥ 0.
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This implies [zi(Mtz)i] ≥ gi
hi

z2
i > 0 for i ∈ I− ∩ ( J̃− ∪ J̃0). Since zi(Mtz)i = 0 ∀i. So, M is

RS f , this completes the proof. �

Remark: Note that the assumption in the above theorem 0 < hi < 1 ∀i, where H =

diag(hi) cannot be relaxed. The following example will help us to better understand that.

Example: Consider the matrix

M =


1 −1 0 0

−1 1 1 1

10 0 1 −1

5 0 −1 1


Note that M is C0 but it is not RS f . For zt =

(
1 1 −1 −1

)
, zt Mz < 0. We have

M̃tz =


1− 2g1 g1 − 1 10− 10g1 5− 5g1

g2 − 1 1− 2g2 0 0

0 1− g3 1− 2g3 g3 − 1

0 1− g4 g4 − 1 1− 2g4




z1

z2

z3

z4


i.e.,

M̃tz


−g1(2z1 − z2 + 10z3 + 5z4) + (z1 − z2 + 10z3 + 5z4)

−g2(−z1 + 2z2) + (−z1 + z2)

−g3(z2 + 2z3 − z4) + (z2 + z3 − z4)

−g4(z2 − z3 + 2z4) + (z2 − z3 + z4)

 =


14g1 − 15

−g2

1

1


It is easy to see that no g1, g2, g3, g4 exists where 0 < gi < 1 ∀i, i.e., no h1, h2, h3, h4 exists

where 0 < hi < 1 ∀i for which the definition of WGPSBD matrix is satisfied. However

with the choice g2 = 0, M is a Merely WGPSBD matrix.

The following theorem is a consequence of the characterization of RS f matrices:

For z ∈ Z, assume that I+ ∩ ( J̃+ ∪ J̃0) 6= ∅ or I− ∩ ( J̃− ∪ J̃0) 6= ∅. For each vector q ∈ Rn, if

(z∗, u∗) is a K.K.T. pair of the quadratic programm QP(M,q), then z∗ solves LCP(M,q).

From Theorem (2.3.11), we conclude that a copositive WGPSBD matrix with 0 < hi <

1 ∀i, where H = diag(hi) and an additional assumption leads to row sufficiency and it

is well known that row-sufficient matrices belongs to P0 ∩ Q0. By a result of M. AGNAGIC

and R.W. COTTLE [1] , it follows that this WGPSBD matrix with the assumption stated in

Theorem (2.3.11) is also processable by LEMKE’S algorithm.

The following theorem will shows that a nonnegative WGPSBD matrix with 0 < hi <

1 ∀i,where H = diag(hi) and with some assumptions falls in the class of C∗0 matrices.
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Theorem 2.3.12. Assume that M is a nonnegative nonnegative WGPSBD with 0 < hi < 1 ∀i,

where H = diag(hi). For z ∈ Z , assume that I+ ∩ ( J̃+ ∪ J̃0) 6= ∅ or I− ∩ ( J̃− ∪ J̃0) 6= ∅. Then

M ∈ C∗0 .

Proof: By Theorem (2.3.11), M = [aij]1≤i,j≤n is RS f . From ([61], Theorem 4), it follows that

for every i ∈ {1, ..., n}, aii = 0 ⇒ Mi. = 0. Let α = {i|aii > 0}. Then zt Mz = 0 for zα = 0.

Now it is easy to check that for (0, zα), Mz ≥ 0 implies Mtz ≤ 0. Thus M ∈ C0
∗. �
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CHAPTER 3

Positive SuB-Definite matrices over a

proper cone K

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1 Definitions and characterization of PSBDK matrices over a proper cone . 55

3.1.1 Definition of PSBDK matrices . . . . . . . . . . . . . . . . . . . . . . . 55

3.1.2 Some fundamental criteria of PSBDK matrices . . . . . . . . . . . . . 56

3.1.3 Some characterization of PSBDK matrices . . . . . . . . . . . . . . . . 57

3.2 Some necessary properties of PSBDK matrix classes . . . . . . . . . . . . . 58

3.3 Some complementarity results over proper cone . . . . . . . . . . . . . . . 64

Introduction

The LCP over a cone is a special case of a general variational inequality problem [13]. Some

important LCP’s over a cone are as like as the LCP’s over Rn
+ [3], such as semi-definite lin-

ear complementarity problems over the cone is as same as positive semi-definite matrices

in the space of real symmetric matrices [23, 24, 36, 50], LCP’s over the Lorentz cone [50, 59]

is in general LCP’s over the symmetric cone in a Euclidean Jordan algebra, etc. While the

complementarity problem over a cone might be considered as a generalization of the well

known linear complementarity problem over Rn
+[3], but the solution of a LCP over Rn

+ do

not carry the similar solution for LCP over a cone, as the cone need not to be isomorphic to

Rn
+.
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3.1. DEFINITIONS AND CHARACTERIZATION OF PSBDK MATRICES OVER A
PROPER CONE 3

The notion of a complementarity cone has been introduced by MURTY [47] in relation

to a LCP over Rn
+. This notion is well studied in the literature of the LCP theory [3].

It has been found useful in studying the existence and multiplicity of solutions to LCP

over Rn
+ and in studying a geometric interpretation of LEMKE’S algorithm to solve the

LCP [3]. The notion of a complementarity cone has been extended to the semi-definite

linear complementarity problems in [36] is further studied in the context of a LCP over a

Lorentz cone in a Euclidean Jordan algebra [37].

M.S. GOWDA [26] studied general and complementarity properties of matrices which are

copositive star on a closed convex cone and the LCP is solvable for all q ∈ Rn. In [32]

the concept of positive sub-definite matrices in asymmetric case defined with respect to a

closed convex cone K of Rn and its interior is nonempty and contains no straight line. Then

it appear in the notion of asymmetric matrices which is an excellent concept to characterize

the operators over K. This has led to some new characterizations and have the advantage

of being simple, smooth and more convenient. In addition, these characterizations allowed

us to provide comprehensive answers to some questions in connection with the LCP. Thus,

it can establish and characterize the existence theorems of the solution of LCP.

In this chapter, we will state our work over a proper cone, which is the generalization

of the concept of pointed, solid, closed convex cone K. Subsequently, we show some

very fundamental and important propositions over this mentioned generalized cone.

Throughout this chapter we consider K ⊆ Rn is a proper cone.

3.1 Definitions and characterization of PSBDK matrices over a

proper cone

As we already said before that in 1969, MARTOS [38] was the first who introduced and char-

acterize the symmetric PSBD matrices on Rn
+. In this section we have introduced and char-

acterized the class of PSBD matrices not necessarily symmetric and compared to a proper

cone K of Rn. Those definitions are already exist on Rn
+.

3.1.1 Definition of PSBDK matrices

Definition 3.1.1. Let K be a proper cone in Rn. A real square matrix M of order n is said to

be:
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- Strictly Positive SuB-Definite on K (Strictly PSBDK) if:

z ∈ Rn, zt Mz < 0 implies either Mtz
K∗
� 0 or Mtz

K∗
≺ 0

- Positive SuB-Definite on K (PSBDK) if:

z ∈ Rn, zt Mz < 0 implies Mtz 6= 0 and either Mtz
K∗
� 0 or Mtz

K∗
� 0

M is said to be Merely PSBDK matrix if M is a PSBDK matrix but not PSDK matrix

3.1.2 Some fundamental criteria of PSBDK matrices

Here we are going to study some spectral characterizations of derived PSBDK matrices. For

more detailed see [32].

Proposition 3.1.2. Suppose M be a Merely PSBDK matrix then ν−(M + Mt) = 1.

Proof: Set B = M + Mt and M is not PSD matrix.

B has at least one negative eigenvalue. Assume for contradiction, that λ1 and λ2 be two neg-

ative eigenvalue of B. The corresponding eigenvectors z1 and z2 are known to be orthogonal

and supposed to be normed. That means,

Bz1 = 2λ1z1, Bz2 = 2λ2z2, ‖z1‖2 = ‖z2‖2 = 1

λ1 ≤ λ2 < 0 and 〈z1, z2〉 = 0

Then both 〈z1, Mz1〉 and 〈z2, Mz2〉 are negative. Without loss of generality , we assume that

Mtz1
K∗
� 0 and Mtz2

K∗
� 0. For δ ∈ [0, 1], we define

z(δ) = δz1 + (1− δ)z2

Then zt(δ)Bz(δ) = 2δ2λ1 + 2(1− δ)2λ2 < 0.

Since M is a Merely PSBDK matrix, it follows that 0 6= Mtz(δ) = δMtz1 + (1− δ)Mtz2 ∈

K∗ ∪−K∗. Since Mtz(1)
K∗
� 0, Mtz(0)

K∗
� 0 and K∗ ∩−K∗ = {0}, there is δ̄ ∈ (0, 1) such that

Mtz(δ̄) = 0, a contradiction. �

Proposition 3.1.3. Suppose M be a Merely PSBDK matrix then (M + Mt)z = 0 ⇒ Mz =

Mtz = 0.

Proof: Let B = M + Mt. Assume that there exist z1, λ1 are defined as in the last proposition

and z0 is such that Bz0 = 0. For δ ∈ R, let us define z(δ) = z1 + δz0. Then

zt(δ)Bz(δ) = 2λ1 < 0
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Without loss of generality, assume that Mtz1
K∗
� 0. Hence M is a Merely PSBDK matrix,

Mtz 6= 0. Now for all δ ∈ R

0 6= Mtz(δ) = Mtz1 + δMtz0 ∈ K∗ ∪−K∗.

Since Mtz 6= 0 is unisigned, it follows that the term containing the coefficient δ should

vanish. Therefore Mtz0 = 0. Thus Bz0 = 0, it implies that Mz0 = 0 as well. �

3.1.3 Some characterization of PSBDK matrices

In this section we resume some characterization of PSBDK matrices over a proper cone K.

For details see [32].

Theorem 3.1.4. ([32], Theorem 1.2.1) Let M ∈ Rn×n be a PSBDK matrix if and only if one and

only one of the following conditions hold:

• M is PSD;

• M = abt 6= 0 with a, b ∈ Rn, a 6= δb for all δ > 0 such that , either or b
K∗
� 0 or b

K∗
� 0;

• rank(M) ≥ 2, ν−(M + Mt) = 1, M(Rn) = Mt(Rn) = (M + Mt)(Rn) and the matrix

Ms is conegative on K.

From Theorem 3.1.4, we recover the characterization of symmetric Merely PSBDK matrices.

Corollary 3.1.5. Assume that M ∈ Rn×n non zero symmetric matrix where M ≥ 2 and ν−(M) =

1. Then the following conditions are equivalent:

• M is Merely PSBDK;

• M is conegative on K.

Proof: The symmetry of M implies that Ms = M. Hence, in view of 3.1.4 conditions (i) and

(ii) above are equivalent. �

For the case where K = Rn
+ and for a symmetric matrix M, the necessary [38, 39] and

sufficient [15] conditions for M to be a Merely PSBD matrix are ν−(M) = 1 and (M 6=
0 and M ≤ 0).

Corollary 3.1.6. Assume that M be a symmetric matrix where rank(M) ≥ 2 and ν−(M) = 1.

Then the following three conditions are equivalent:

• M is Merely PSBDK;
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• M is conegative on K;

• M 6= 0 and M ≤ 0.

Proof: The conditions (i) and (ii) are equivalent from the above Corollary 3.1.5. Condition

(iii) obviously implies condition (ii). Conversly, suppose that conditions (i) and (ii) hold.

Then, for all z
K
� 0, zt Mz ≤ 0, hence Mz

K∗
� 0 or Mz

K∗
� 0. It is then easily derived that M

cannot have a positive entry. �

The following corollary is a further result of Corollary 3.1.5.

Corollary 3.1.7. Assume that M ∈ Rn×n be a non zero symmetric copositive matrix on K. The

matrix M is PSBDK if and only if M is PSD.

Proof: A symmetric matrix which is at a time copositive and conegative and whose interior

is nonempty is the null matrix. �

3.2 Some necessary properties of PSBDK matrix classes

We consider the case of proper cone and we obtain the following propositions:

Proposition 3.2.1. A non zero symmetric matrix M = δ bbt, (b ∈ Rn and δ ∈ R) is PSBDK if

and only if one of the following conditions holds:

• δ > 0, M is Positive Semi-Definite (PSD).

• δ < 0 (M is Negative Semi-Definite) and either b
K∗
� 0 or b

K∗
� 0.

Proof: Let M a non zero symmetric matrix of rank one M = δ bbt. For a vector z ∈ Rn

zt Mz = δ(btz)t(btz) = δ(btz)2

• for δ > 0 , zt Mz ≥ 0 for all z ∈ Rn and then M is PSD.

• for δ < 0 , zt Mz ≤ 0 for all z ∈ Rn and then M is NSD; and in this case M is PSBDK

if and only if

Mtz
K∗
� 0 or Mtz

K∗
� 0 for all z ∈ Rn

which is equivalent to:

bbtz
K∗
� 0 or bbtz

K∗
� 0
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i.e.,

b
K∗
� 0 or b

K∗
� 0

This ends the proof. �

Proposition 3.2.2. A non zero asymmetric matrix M = abt, (a, b ∈ Rn and b 6= δa for all δ ∈ R)

is PSBDK if and only if either b
K∗
� 0 or b

K∗
� 0.

Proof: Let M a non zero asymmetric matrix of rank one, M = abt, and b 6= δa for all δ ∈ R.

M is PSBDK if and only if z ∈ Rn and

zt Mz < 0 implies either Mtz
K∗
� 0 or Mtz

K∗
� 0

i.e.,

(atz)(btz) < 0 implies either (atz)b
K∗
� 0 or (atz)b

K∗
� 0

i.e.,

b
K∗
� 0 or b

K∗
� 0

This ends the proof. �

Note: A Skew-Symmetric Matrix of rank one is a zero matrix.

Some basic properties of copositive matrix on a proper cone are summarized in the follow-

ing proposition.

Proposition 3.2.3. A non zero asymmetric Merely PSBDK matrix M = abt, a, b ∈ Rn is:

• Strictly CK
0 if and only if either (a

K∗
� 0 and b

K∗
� 0) or (a

K∗
≺ 0 and b

K∗
≺ 0).

• CK
0 if and only if either (a

K∗
� 0 and b

K∗
� 0) or (a

K∗
� 0 and b

K∗
� 0).

• CK
0
∗ if and only if M is CK

0 and
(

z
K
� 0, btz = 0⇒ atz = 0

)
.

• CK
0
+ if and only if M is CK

0 and z
K
� 0,

(
btz = 0⇔ atz = 0

)
.

Proof: Let M be a matrix of rank one, M = abt, a, b ∈ Rn. Suppose that M is Merely PSBD

that means (b
K∗
� 0 or b

K∗
� 0).

• M is Strictly CK
0 if:

zt Mz = (atz)t(btz) > 0 ∀z
K
� 0 and z 6= 0
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then either
(
atz > 0 and btz > 0

)
or

(
atz < 0 and btz < 0

)
∀z

K
� 0

i.e.,

either (a
K∗
� 0 and b

K∗
� 0) or (a

K∗
≺ 0 and b

K∗
≺ 0)

• M is CK
0 if:

zt Mz = (atz)t(btz) ≥ 0 ∀z
K
� 0

then either (atz ≥ 0 and btz ≥ 0) or (atz ≤ 0 and btz ≤ 0) ∀z
K
� 0

i.e.,

either (a
K∗
� 0 and b

K∗
� 0) or (a

K∗
� 0 and b

K∗
� 0)

• M is CK
0
∗ if M is CK

0 and also verify the following implication:(
z

K
� 0, Mz

K∗
� 0 and zt Mz = 0

)
⇒ Mtz

K∗
� 0

which is equivalent to(
z

K
� 0, a(btz)

K∗
� 0 and (btz)(atz)t = 0

)
⇒ b(atz)

K∗
� 0

i.e., (
z

K
� 0, either atz = 0 or btz = 0

)
⇒ atz = 0

i.e.,

z
K
� 0, btz = 0 ⇒ atz = 0

• CK
0
+ if M is CK

0 and also verified the following implication:(
z

K
� 0 and zt Mz = 0

)
⇒ (M + Mt)z ∈ K⊥

which is equivalent to(
z

K
� 0 and (btz)(atz)t = 0

)
⇒ a(btz) + b(atz) ∈ K⊥

i.e., (
z

K
� 0 either atz = 0 or btz = 0

)
⇒ a(btz) + b(atz) ∈ K⊥

Now if,

z
K
� 0 atz = 0 ⇒ a(btz) ∈ K⊥

i.e.,

z
K
� 0 atz = 0 ⇒ btz = 0
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and if,

z
K
� 0 btz = 0 ⇒ b(atz) ∈ K⊥

i.e.,

z
K
� 0 btz = 0 ⇒ atz = 0

both cases means

z
K
� 0, (btz = 0 ⇔ atz = 0)

This completes the proof. �

Lemma 3.2.4. K ∩ b⊥ ⊆ a⊥ is equivalent to λa− γb
K∗
� 0 for some λ, γ ∈ R.

Proof:

K ∩ b⊥ ⊆ a⊥ (3.2.1)

Using the polarity property in condition (3.2.1), which is equivalent to

(a⊥)∗ ⊆ K∗ + (b⊥)∗

i.e.,

{λa, λ ∈ R} ⊆ K∗ + {µb, µ ∈ R}

i.e.,

∃λ, µ ∈ R such that λa− µb
K∗
� 0

The proof is attain. �

Lemma 3.2.5. K ∩ b⊥ = K ∩ a⊥ is equivalent to λa− µb ∈ K∗ − K∗ for all λ, γ ∈ R

Proof:

K ∩ b⊥ = K ∩ a⊥ (3.2.2)

Using the polarity property in condition (3.2.2), which is equivalent to

K∗ + (b⊥)∗ = K∗ + (a⊥)∗

i.e.,

(a⊥)∗ − (b⊥)∗ = K∗ − K∗

i.e.,

∀λ, µ ∈ R such that λa− µb ∈ K∗ − K∗

The proof is attain. �
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Theorem 3.2.6. A non zero asymmetric matrix M = abt, a, b ∈ Rn is:

• Merely PSBDK and CK
0
∗ if and only if

– either (a
K∗
� 0 and b

K∗
� 0) or (a

K∗
� 0 and b

K∗
� 0)

– and ∃λ, γ ∈ R such that λa− γb
K∗
� 0

• Merely PSBDK and CK
0
+ if and only if M is CK

0

– either (a
K∗
� 0 and b

K∗
� 0) or (a

K∗
� 0 and b

K∗
� 0)

– and ∀λ, γ ∈ R and λa− µb ∈ K∗ − K∗.

Proof:

• The result of “if” part is already proven in Proposition 3.3.3 and Lemma 3.3.4 In the

following we are going to prove the “only if” part of this theorem. Without loss of generality

assume that

(a
K∗
� 0 and b

K∗
� 0) and ∃ λ, µ ∈ R such that λa− γb

K∗
� 0

and suppose that M is not CK
0
∗, i.e.,

∃ z0
K
� 0, Mz0

K∗
� 0, zt

0Mz0 = 0 and Mtz0

K∗

� 0

i.e.,

∃ z0
K
� 0, a(btz0)

K∗
� 0, (atz0)

t(btz0) = 0 and b(atz0)
K∗

� 0

i.e.,

∃ z0
K
� 0, (atz0)

t(btz0) = 0 and atz0 6= 0

i.e.,

∃ z0
K
� 0, btz0 = 0 and atz0 6= 0

or

z0 ∈ K ∩ b⊥ and z0 6∈ a⊥

i.e.,

K ∩ b⊥ * a⊥

but after Lemma 3.3.4 we have

K ∩ b⊥ ⊆ a⊥

is a contradiction.
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• The result of “if” part is already proven in Proposition 3.3.3 and Lemma 3.3.5. In the

following we are going to prove the “inverse or only if” part of this theorem. Without loss

of generality assume that

(a
K∗
� 0 and b

K∗
� 0) and ∀ λ, µ ∈ R such that λa− γb ∈ K∗ − K∗

and suppose that M is not CK
0
+, i.e.,

∃ z0
K
� 0, zt

0Mz0 = 0 and (M + Mt)z0 6∈ K⊥

i.e.,

∃ z0
K
� 0, (atz0)

t(btz0) = 0 and b(atz0) + a(btz0) 6∈ K⊥

i.e.,

∃ z0
K
� 0, either atz0 = 0 or btz0 = 0 ⇒ a(btz0) + b(atz0) 6∈ K⊥

Now if,

∃ z0
K
� 0, btz0 = 0 and b(atz0) 6∈ K⊥

i.e.,

∃ z0
K
� 0, btz0 = 0 and atz0 6= 0

or

z0 ∈ K ∩ b⊥ and z0 6∈ a⊥

i.e.,

k ∩ b⊥ * a⊥

and if

∃ z0
K
� 0, atz0 = 0 and a(btz0) 6∈ K⊥

i.e.,

∃ z0
K
� 0, atz0 = 0 and btz0 6= 0

or

z0 ∈ K ∩ a⊥ and z0 6∈ b⊥

i.e.,

k ∩ a⊥ * b⊥

from both cases we have

k ∩ b⊥ 6= K ∩ a⊥

but after Lemma 3.3.5 we have

k ∩ b⊥ = K ∩ a⊥
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is a contradiction. �

In the following we resume the above propositions in one theorem.

Theorem 3.2.7. Let K be a proper cone and M be a square matrix of rank one, M = abt with

a, b ∈ Rn (n ≥ 2) and a, b 6= 0.

• If a = δb for some δ ∈ R, then M is symmetric and,

– if δ > 0 then M is PSD.

– if δ < 0 and either b
K∗
� 0 or b

K∗
� 0, then M is Negative Semi-Definite and PSBDK.

• If a 6= δb for all δ ∈ R, then M is asymmetric and,

– if either (b
K∗
� 0) or (b

K∗
≺ 0), then M is Strictly PSBDK

– if either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
≺ 0 and a

K∗
≺ 0), then M is Strictly PSBDK and

Strictly CK
0 .

– if either (b
K∗
� 0 and a

K∗
≺ 0) or (b

K∗
≺ 0 and a

K∗
� 0), then M is Strictly PSBDK and

Strictly CK
0 − negative.

– if either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
≺ 0 and a

K∗
� 0), then M is Strictly PSBDK and CK

0 .

– if either b
K∗
� 0 or b

K∗
� 0, then M is PSBDK.

– if either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0), then M is PSBDK and CK

0 .

– if either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0), then M is PSBDK and Conegative on

K.

– if (K ∩ b⊥ ⊆ a⊥) and either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0), then M is CK

0
∗.

Notice that K ∩ b⊥ ⊆ a⊥ is equivalent to λa− γb
K∗
� 0 for some λ, γ ∈ R.

– if (K ∩ b⊥ = K ∩ a⊥) and either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0), then M is

CK
0
+.

Notice that (K ∩ b⊥ = K ∩ a⊥) is equivalent to λa− γb ∈ K∗ − K∗ for all λ, γ ∈ R

3.3 Some complementarity results over proper cone

Several existence theorem are established for a given complementarity problem over a cer-

tain cone. In this paper, we consider the question of the existence of a solution to a gener-

alized version of (1) where the nonnegative orthant Rn
+ is replaced by a proper cone K in

Rn. For this reason, here we resume only a few results of complementarity problem which
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are based on a pointed , solid, closed and convex cone. The following Corollary is easily

derived from the Theorem 3.2.7.

Corollary 3.3.1. Let K be a proper cone and M be a square matrix where M = abt with a, b ∈ Rn

(n ≥ 2) and a, b 6= 0. The LCP(M, q, K) is solvable whenever it is feasible if and only one or more

of the following conditions holds:

• a = δb for some δ > 0.

• a 6= δb for all δ > 0 and

– either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0).

– either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0), and (K ∩ b⊥ ⊆ a⊥).

– either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0), and (λa− µb

K∗
� 0 for some λ, µ ∈ R).

– either (b
K∗
� 0 and a

K∗
� 0) or (b

K∗
� 0 and a

K∗
� 0), and (K ∩ b⊥ = K ∩ a⊥).

– either (b
K∗
� 0 and q = λa− µb with λ, µ ≥ 0) or (b

K∗
� 0 and q = µb− λa with λ,

µ ≥ 0).

Theorem 3.3.2. ([30], Theorem 3.1) Let K be a pointed, closed, convex cone in Rn, K∗ its polar

cone, and q0 a given vector int(K∗). Let M : K → Rn be continuous and positively homogeneous of

degree r. If the complementarity problem (1) has a unique solution (namely, z = 0) for q = 0, and

fore q = q0, then it has a solution for all q ∈ Rn.

In the context of the LCP, the properties of copositive matrices seem a bit too strong. The

following theorem is a good one to establish the existence results for the LCP.

Theorem 3.3.3. ([26], Proposition 9) Suppose that M is CK
0
∗. Then the following conditions are

equivalent:

• LCP(M, q, K) is solvable for all q,

• LCP(M, q, K) is feasible for all q,

• z ∈ K, Mz ∈ K∗, zt Mz = 0⇒ z = 0.

This is a special case of more general result in [27], proved for positive homogeneous map-

pings on a locally compact cone in a locally convex space using convex programming tech-

niques.

65



Annexes

LEMKE’S Algorithm

A.1 Matrix classes based on LEMKE’S Algorithm

Some matrix classes characterize certain properties of the Linear Complementarity Prob-

lem(LCP) and they offer certain nice features from the view point of algorithms. Here we

only state some of those matrix classes which have been designed LEMKE’S Algorithm for

the solution of the LCP.

A real square matrix M of order n not necessarily symmetric is said to be a Z-matrix if:

- aij ≤ 0, ∀i 6= j

A real square matrix M of order n is said to be an E0-matrix if:

- for every 0 6= z ≥ 0, z ∈ Rn, ∃ an i such that zi > 0 and (Mz)i ≥ 0.

The class of such matrices is also called the class of semimonotone matrices.

A real square matrix M of order n is said to be an L2-matrix if:

- for each 0 6= ξ ≥ 0, ξ ∈ Rn satisfying η = Mξ ≥ 0 and ηtξ = 0, ∃ a 0 6= ξ̂ ≥ 0 such

that ξ ≥ ξ̂ and η ≥ η̂ ≥ 0, where η̂ = −Mt ξ̂.

A real square matrix M of order n is in the class E(d) where:

- d ∈ Rn if w̄, z̄, z̄ 6= 0 is a solution for the LCP(d,M) implies that ∃ a 0 6= x ≥ 0 such

that y = −Mtx ≥ 0, x ≤ z̄, y ≤ w̄.

TODD [60] defines larger classes E1(d) and L1(d) by extending the classes E(d) and L(d) of

GARCIA [20] as follows:

Let (w, z) solve LCP(d,M) for some d ∈ Rn. Consider the following conditions on a given

M ∈ Rn×n.

66



a) For all α with {j | zj > 0} ⊆ α ⊆ {j |wj = 0}, the principle submatrix of M corre-

sponding to α has a positive determinant.

b) There is 0 6= x ≥ 0 with y = −Mtx ≥ 0 and x ≤ z, y ≤ w.

TODD defines the classes E1(d) = {M | Either condition (a) or (b) is satisfied} and L1(d) =

E1(d) ∩ E1(0). Note that L(d) ⊆ Q0 [20] and L1(d) ⊆ Q0 [60] if d > 0.

A.2 LEMKE’S Algorithm

The complementarity pivot scheme due to LEMKE [34] (also known as LEMKE’S algorithm)

for solving (1.0.1) and (1.0.2) has stimulated a considerable amount of research in the classes

of matrices M for which it can process LCP(M,q). The steps of the algorithm are given

below.

The initial solution to (1.0.1) and (1.0.2) is taken as

w = q + dz0

z = 0

where d ∈ Rn is any given positive vector which called covering vector and z0 is an artificial

variable which takes a large enough value so that w > 0. The ray is called primary ray [35].

1st Step : Decrease z0 so that one of the variables wi, 1 ≤ i ≤ n, say wr is reduced to zero.

We now have a basic solution with z0 in place of wr and with exactly one pair of

complementarity variables(wr, zr) being nonbasic.

2nd Step : At each iteration, the complement of the variable which has been removed in the

previous iteration is to be increased. In the second iteration, for instance, zr will be

increased.

3rd Step : If the variable corresponding to the selected column in step 2 that enters the basis can

be arbitrarily increased, then the procedure terminates in a secondary ray. If a new

basic feasible solution is obtained with z0 = 0, we have solved (1.0.1) and (1.0.2).

If in the new basic feasible solution z0 > 0, we have obtained a new basic pair of

complementary variables (ws, zs). We repeat step 2.

LEMEK’S algorithm consists of the repeated applications of steps 2 and 3. If nondegeneracy

is assumed, the procedure terminates either in a secondary ray or in a solution to (1.0.1)

and (1.0.2). If degenerate almost complementary solutions are generated, then cycling can
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be avoided using the methods discussed by ([11]). See [3] for a detailed discussion on

LEMKE’S algorithm.

We say that an algorithm processes a problem if the algorithm can either compute a solution

to it if one exists, or show that no solution exists. For M ∈ L(d) where d > 0 the success

of LEMKE’S algorithm applied to LCP(M,q) with d as the covering vector is guaranted if it

is feasible. Todd [60] proved that LEMKE’S algorithm with covering vector d > 0 processes

LCP(M,q) for all matrices M ∈ L1(d) (Todd [60] defines larger class L1(d) by extending

the class L(d)). Also LCP(M,q) are processed by LEMKE’S algorithm when M is a RS f

matrix. See ([4], page-239), RAMAMURTHY [54] showed that LEMKE’S algorithm for the

linear complementarity problem can be used to check whether a given Z matrix is a P0

matrix and it can also be used to analyze the structure of finite Markov chains.
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Si     
  , le problème s’écrit sous forme d’un système d’inégalités : 

                     

      
Plusieurs classes des matrices symétriques ou asymétriques ont été introduites sur le chemin de la 

faisabilité et de la solvabilité du problème de complémentarité linéaire.   

Dans notre recherche, nous sommes intéressés à la famille des matrices PSBD dérivés. L’objectif de 

cette thèse est de vérifier les caractéristiques de ces matrices en utilisant leur rang. Dans la première 

partie de notre travail, nous  utilisons les matrices de rang un car, par définition et leur caractéristique,  
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If      
  it can be stated on simply denoted by    (    )  is to find an  -vector   such that: 

                      

      
 

A good number of matrix classes either symmetric or asymmetric have been introducing along 

the path of the feasibility and the solvability of the Linear Complementarity Problem. 
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