Modélisation stochastique des images texturées

Le Catalogue Collectif des Thèses en Afrique

Voir la notice simple de la thèse

dc.contributor.author Drissi El Maliani Ahmed
dc.date.accessioned 2015-03-19T11:45:20Z
dc.date.available 2015-03-19T11:45:20Z
dc.date.issued 2013-07-20
dc.identifier.uri http://toubkal.imist.ma/handle/123456789/1611
dc.description.abstract This thesis focuses on the characterization of color textures by stochastic models in the wavelet domain. The wavelet decomposition provides a spatial frequency representation that is similar to human perception system. The work in this study concerns firstly the description of the marginal statistics of the subband textures, offering univariate best fitting to the non-Gaussian nature of the subband wavelet. In this context, we introduce the generalized Gamma model to provide more genericity and deal with the heterogeneity in image databases. In a second step, we are interested in the joint characterization by multivariate models describing the dependencies between sub-bands of color components of a texture. We propose a generic multivariate model called generalized multivariate Gamma in case the color textures are represented in the reference space, RGB and a multi-model approach in case the color textures are represented in luminance-chrominance spaces. The performance of the proposed models is experimentally evaluated based on the problem of texture classification. This requires that the modeling process considers a similarity measure on the space of the model. To do this, we propose analytic expressions metrics for the models that we offer, which represents a further contribution of this study. fr_FR
dc.language.iso fr fr_FR
dc.publisher Université Mohammed V - Agdal, Faculté des Sciences, Rabat fr_FR
dc.relation.ispartofseries Th-621.382/MAL;
dc.subject Sciences de l'ingénieur fr_FR
dc.subject Informatique fr_FR
dc.subject Télécommunication fr_FR
dc.subject Modèle stochastique fr_FR
dc.subject Texture fr_FR
dc.subject Kullback-Leibler fr_FR
dc.subject Rao géodésique fr_FR
dc.subject Image texturée fr_FR
dc.title Modélisation stochastique des images texturées fr_FR
dc.description.collaborator Aboutajdine, Driss (Président et Directeur de la thèse)
dc.description.collaborator Berthoumieu, Yannick (Examinateur)
dc.description.collaborator Adib, Abdellah (Examinateur)
dc.description.collaborator Bakrim, M'Hamed (Examinateur)
dc.description.collaborator El Marraki, Mohamed (Examinateur)
dc.description.collaborator El Hassouni, Mohammed (Examinateur)
dc.description.laboratoire Informatique et Télécommunications, (LAB.) fr_FR

Fichiers dans ce document

Cette thèse figure dans la collection suivante

Voir la notice simple de la thèse


Recherche Avancée


Mon compte